This Spiel is interactive. Guide your mouse cursor over a part of the SCBA and you will go directly to that part of the spiel. You can also continue on to page 2 and read the spiel without using the interactive parts of the SCBA picture.

TABLE OF CONTENTS

Self-Contained Breathing Apparatus
I. General Use and Description

II. Components

III. Cylinder

IV. High Pressure Hose/RIC UAC

V. Pressure Reducer

VI. Low Pressure Hose/Mask Mounted Regulator Connection (MMR)

VII. Mask Mounted Regulator (MMR)/Heads Up Display (HUD)

VIII. Mask AV2000/AV3000 and Voice Amplifier

IX. Back frame and harness

X. PAK Alert

XI. SEMS/Remote Pressure Gauge

XII. Single EBSS

XIII. Types of SCOTT SCBA’s in use by RFD.

XIV. RIC PAK

XV. Cleaning and Disinfection Procedures

XVI. PPE and SCBA Donning

XVII. SCBA Escape Procedures

XVIII. Cylinder re-fill stations

XIX. SCBA Repair and Maintenance

GENERAL USE AND DESCRIPTION

Self-Contained Breathing Apparatus (SCBA) shall be used by all personnel when the following conditions are met according to SOP #317
RFD SOP #317 states that SCBA’s shall be worn and used by all personnel in the following conditions (*THESE CONDITIONS ARE A MINIMUM*):

1. The atmosphere is hazardous
2. The atmosphere is suspected of being hazardous
3. The atmosphere may rapidly become hazardous

The above three areas are an absolute minimum. The following information is better defined and should be used as a guideline with the SCBA.

1. Oxygen deficient atmospheres (oxygen levels below 19.5%)
2. Elevated temperatures
3. Presence of smoke or unburned products of combustion
4. Toxic Environments
 a. The atmosphere is hazardous.
 b. The atmosphere is suspected of being hazardous.
 c. The atmosphere may rapidly become hazardous.
5. In an active fire area.
6. Directly above an active fire area.
7. In a potential explosion or fire area, including gas leaks and fuel spills.
8. Where products of combustion are visible in the atmosphere, including vehicle fires and dumpster fires – where invisible contaminants are suspected to be present (i.e. Carbon Monoxide during overhaul).
9. Where toxic products are present, suspected to be present, or may be released without warning.
10. In any confined space which has not been tested to establish respiratory safety.

This includes all personnel operating:

- In an active fire area.
- Directly above an active fire area.
- In a potential explosion or fire area, including gas leaks and fuel spills.
- Where products of combustion are visible in the atmosphere, including vehicle fires and dumpster fires – where invisible contaminants are suspected to be present (i.e. Carbon Monoxide during overhaul).
- Where toxic products are present, suspected to be present, or may be released without warning.
- In any confined space which has not been tested to establish respiratory safety.

In addition to the above, S.C.B.A. shall be worn by all personnel operating at fire incidents above ground, below ground or in any other area which is not, but which may become contaminated by products of combustion or other hazardous substances. In these circumstances only, the S.C.B.A. may be worn with the face piece removed. The wearing of S.C.B.A. in these situations provides that it will be immediately available for use if conditions change or if personnel are to enter an area where the use of
S.C.B.A. is required.

Premature removal of S.C.B.A. must be avoided at all times. This is particularly significant during overhaul when smoldering materials may produce increased quantities of carbon monoxide and other toxic products. In these cases S.C.B.A. must be used or the atmosphere must be changed.

In routine fire situations, the decision to remove S.C.B.A. shall be made by Company Officers, with the approval of Chief Officers, based on an evaluation of atmospheric conditions. Prior to removal, fire areas shall be thoroughly ventilated and, where necessary, continuous ventilation shall be provided.

If there is any doubt about respiratory safety, S.C.B.A. use shall be maintained until the atmosphere is established to be safe by testing. Safety personnel shall be responsible for this determination.

This is required in complex situations, particularly when toxic materials may be involved.

An evaluation of all members of the Operations Division in the use of the S.C.B.A. shall be conducted both quarterly and annually. Each member shall be able to demonstrate a high level of proficiency and compatibility with the S.C.B.A. under conditions which simulate those expected as a job requirement.

Each member shall also demonstrate an effective face piece to skin seal of the S.C.B.A. face piece.

COMPONENTS

- Cylinder
- High Pressure Hose/RIC UAC
- Pressure Reducer
- Low Pressure Hose/MMR Connection
- MMR and HUD
- AV2000/AV3000 Mask and Voice Amplifier
- Back Frame and Harness
- PAK Alert
- SEMS Remote Pressure Gauge
- Single EBS

CYLINDER

A. All of our cylinders are made by a local air supply company named Luxfur.

B. The cylinder is made from 6061 T6 Aluminum, the process is called deep drawn, this process creates a seamless cylinder from one piece of aluminum.

C. The cylinder is constructed of aluminum, carbon fiber, fiberglass and resin. This is what is referred to as composite construction.
D. The cylinder is then wrapped with carbon fiber strands, first helical wrapped then hoped wrapped again then helical wrapped again. The carbon fiber wrapping gives the cylinder the majority of its strength, without it, it would rupture at about 900 psi. After the carbon fiber wrapping is complete the cylinder is helical wrapped with fiberglass. This fiberglass wrapping is to protect the carbon fiber wrapping and any strength it adds is inconsequential. The cylinder is then finished off with a clear resin.

E. All RFD Cylinders are composite.

F. All cylinders are hydrostatically tested every three years.

G. All cylinders have a fifteen year service life.

H. Cylinders are tested at 5/3 of their working pressure or to 7500 psi.

I. There are five types of cylinders in use by the RFD today.

1. **Hoop wrapped** = Flat bottoms, painted yellow, oldest on the dept., body only fiberglass. These cylinders are almost out of service.

2. **Total wrapped** = Painted yellow, fiberglass wrapped on top and bottoms.

3. **Total wrapped featherweight** = not painted yellow, yellow look comes from pigment within the fiberglass.

4. **Kevlar total wrapped** = Kevlar around the bottle, wrapped with fiberglass and epoxy resin. Appears whitish.
5. **Carbon total wrapped** = same as Kevlar except Carbon Fiber is substituted. Cylinder appears gray.

J. RFD uses four different types of cylinders.

1. 5 Minute escape cylinder for SABA PAK’s.

2. 30 Minute cylinder’s for SCBA’s.
 a. 30 Minute cylinders hold 45 cu. Ft. of type 1 grade D air.

3. 45 Minute cylinder’s for RIC PAK’s.
 a. 45 Minute Cylinder holds 87 cu. Ft. of type 1 grade D air.

4. 60 Minute cylinder’s for HAZ-MAT Team.
 a. 60 Minute Cylinder holds XX cu. Ft. of type 1 grade D air.

K. Operating temperature is 125 to 160 degrees F.

L. Cylinder Markings:
1. TC-SU: Transport Canada
2. DOT: Department of Transportation
3. 4500: Maximum working pressure.
4. Cylinder Serial number may be with the following:
 a. OK 135919
 b. WF
 c. WA
 d. SCN
5. 5/05: Cylinder manufacture date.
6. REE: Rejection Elastic Expansion – measured when hydro tested.
7. Cylinder Inventory Number:
8. Hydro Sticker.
a. The cylinder inventory number will be located under the hangar bracket at on the cylinder neck.

b. The inventory starts with the year xx on this cylinder is 05.

c. The next three digits is the number of cylinder purchased that year. 016, this is the 16th cylinder purchased on 2005.

M. Valve Assembly

1. Sherwood manufactures the valves.

2. Constructed from forged aluminum.

3. Hand wheel/cylinder valve knob.
 a. Spring loaded uses ratchet type lock for “Lock Open Service.”
 b. Must depress to shut valve closed.
 c. Prevents accidental shutting off of cylinder.
 d. Prevents accidental turning on of cylinder.
4. Frangible disc. (Appears as silver nut on the valve assembly).
 a. Consist of copper wafer.
 b. Prevents over pressurization.
 c. Torque down to 125lbs equivalent to bursting at 7500 psi.
 d. Disc ruptures, must be taken out of service immediately.

5. Discharge port.
 a. Hole drilled into threads allowing for high pressure release.
 b. Other SCBA systems will not seat properly causing air to blow out of the holes.
 c. Used as a safety feature so that low pressure SCBA’s and other SCBA manufactures are not damaged.

6. Dual reading pressure gauge.
 a. Protected by an elastomeric bumper guard.
 b. Contains numbers from 0 – 40 in increments of 10.
A. The high pressure hose connects to the cylinder using the high pressure hose/RIC UAC connector. This hose allows high pressure air to enter into the pressure reducer.

B. This coupling should be hand tight only.

C. The high pressure hose is 9” long.

D. The high pressure hose is constructed of wire mesh and covered by neoprene rubber liner.

E. RIC/UAC is built with a pressure valve if the pressure exceeds 4500 psi.

F. The RIC/UAC coupling is a universal coupling that allows other manufacture RIC PAK’s ability to connect and trans-fill the cylinder.

G. The RIC/UAC utilization is for emergency purposes only.

H. The HP coupling has a hex on it to loosen only with a wrench.

I. The HP coupling has a grey o-ring. Ensure o-ring is in place.
A. Verify no damage to cylinder to be charged.

B. Verify cylinder valve on SCBA to receive air is open.

C. Push RIC/UAC hose with quick disconnect coupling onto the SCBA RIC/UAC fitting until the quick disconnect sleeve “clicks”.

D. Slowly open the RIC cylinder to fill SCBA.

E. Air pressure from RIC cylinder will flow into SCBA cylinder until both cylinder pressures are equal, charging is complete, disconnect the RIC coupling.

F. The cylinder will not be completely full – the cylinder equalized.

G. Disconnect RIC hose, pull coupling sleeve away from RIC connection until coupling disengages, replace dust cap.

H. Monitor both cylinders air pressures, and repeat the above procedures until SCBA user can be removed from the hazardous atmosphere.

I. RIC does not have a low pressure alarm and must be monitored for air pressure level at all times.
A. The pressure reducer is constructed of aluminum alloy.

B. The pressure reducer consists of ten parts:

1. Primary reducer (85 psi to 110 psi).
2. Secondary reducer (145 psi to 165 psi when activated with approx. 5 minutes of air left in the cylinder or 1,250 psi in cylinder for 30 minute cylinder).
3. Automatic transfer valve.
4. Low cylinder transfer valve.
5. Safety relief valve.
6. Check valve.
7. Press to test button.
8. Remote reading pressure gauge.

9. Single EBSS connection (Emergency Buddy Breathing)

10. HUD remote display.

C. Pressurization

1. The pressure reducer is constructed of aluminum alloy.

2. When the cylinder is turned on, the cylinder pressure (which should be 4,500 psi) is reduced down to:
 a. 85 psi to 110 psi in the primary reducer.
 b. 145 psi to 165 psi in the secondary reducer (when there is approx 5min, of air left or 25% of cylinder air is left).

3. The Vibralert will activate for a short period initially as the pressure is low then builds to high as the cylinder is turned on.

D. Remote reading pressure gauge.

1. Should match the cylinder at all times. Is only allowed 100 psi pressure difference from the cylinder pressure.

E. Operation

1. During normal operation valves within the pressure reducer function properly, closing and opening when needed depending upon how much air is left within the cylinder.
A. The low pressure hose delivers air from the pressure reducer regulator to the mask mounted regulator.

B. The low pressure hose supplies air at 85-110 psi or 145 to 165 psi depending if PR or SR is working.

C. Hose is tested to 300 psi.

D. Made of neoprene rubber.

E. Included in the hose is a electrical wire and electrical coupling for the HUD.
MMR AND HUD

HUD Display

MMR Gasket

Purge Valve

MMR to Mask Connection

Mask Locking Clip

Donning Switch

MMR Designator
MASK MOUNTED REGULATOR

A. Delivers air to the user at just above atmospheric pressure of 14.7 psi, includes a vibrating warning device and HUD warning device.

B. The MMR is equipped with demand flow, which will increase the flow of air upon demand of the user.

1. A fiberglass reinforced nylon cover and body protects the internal components and helps vent air out of the regulator.

2. A large seal makes an airtight fit to the mask.

3. Spray bar air delivery helps keep the mask fog free.

4. Purge valve is used to clear mask or as an emergency bypass if the regulator fails. It flows up to 125 LPM.

5. Air saver switch prevents free flow of air when the MMR is removed from the face piece. To activate press the button.

6. Spring loaded regulator release latch to stop the accidental disengagement of MMR from Mask.

7. Vibra-Alert low air warning device. Activated when the cylinder gets to 1125 psi. Regulator will vibrate and give audible warning down to approx 500 psi.
8. HUD display provides a visual monitor of the air supply in the cylinder. The display is fitted to the mask-mounted regulator and appears across the bottom of the user’s field of vision through the face piece.

9. The HUD display consists of four rectangular lights to represent the cylinder pressure at the following indicators:
 a. Two Green lights the cylinder is full.
 b. One Green light the cylinder is ¾ full.
 c. One Yellow light the cylinder is ½ full.
 d. One Red light the cylinder is ¼ full.
 i. A fifth red light indicates the following:
 1. Low Battery – will light at the far right of the display for 20 seconds and then slowly flash once per second.

10. Operation of the HUD:
 a. When the respirator use begins, the HUD will initialize and illuminate all five lights for twenty (20) seconds.
 b. Operation of all five lights must be verified every time.
 c. After initialization, the rectangular indicator lights will show the level of air supply in the cylinder as follows:
 1. Full = Two green lights on constantly.
 3. Half = Yellow slow flashing, once per second = should get ready and leave the work area. Think about travel and escape time.
 4. One-Quarter = Red rapid flashing, 10X per second = must leave.
A. The mask consist of five parts:

1. **Lens**: Constructed of polycarbonate with two voice emitter ports.

2. **Face Seal**: Made of neoprene rubber. Comes in four different sizes.
 a. Green – Small
 b. Black – Medium
 c. Black – Comfort Seal
 d. Maroon – Large

3. **Nose Cup**: Made of neoprene rubber.

4. **Head Harness**: Made of Kevlar, includes temple strap, and chin strap.

5. **Voice Amplifier**: Powered by a 9 volt battery. Check to see if green light is illuminated.
B. The mask consist of five parts:

1. Lens: Constructed of polycarbonate with two voice emitter ports.

2. Face Seal: Made of neoprene rubber. Comes in three different sizes.
 a. Green – Small
 b. Black – Medium
 c. Black – Large

3. Nose Cup: Made of neoprene rubber.

4. Head Harness: Made of Kevlar, includes temple strap, and chin strap.

5. Voice Amplifier: Powered by a 9 volt battery. Check to see if green light is illuminated.

BACK FRAME AND HARNESS

I. Wire Form Frame and Air PAK Fifty.

A. Wire Form

 1. Older style with spot welds on frame.
2. Straps made of Kevlar
3. Found in following locations:
 a. Brush Engines – Total 8
 b. Investigator Unit – Total 3
 c. Haz-Mat
 d. Tech Rescue
 e. Reserve SCBA’s
 f. Training SCBA’s

B. AP 50
1. Back frame and harness assembly to support the cylinder, valve assembly, and pressure reducer on the body.
 a. Hip and shoulder straps and pads – Kevlar.
 b. Designed to carry weight on users hips.
 c. Remote pressure gauge with SEMS.
 d. PAK Alert sensor module.
 e. RIC/UAC
 f. Cylinder latch with Tri-slide buckle.

2. Toggle lever for ease of switching cylinders.

PAK ALERT

I. Operates on the principle of motion (sensors are located in the hip area of the backframe).
 A. When the cylinder is turned on the unit is activated automatically. (Three beeps and green flashing LED).
 B. Lack of motion for 20 seconds activates a pre-alert alarm (a alternating tone with all red flashing LED).
 C. Pre-alert may be reset with slight movement or manual reset by pressing the yellow button on the remote pressure gauge
D. PAK Alert will go into full alarm after 3 cycles of audible alarm. (12 seconds).

E. Will emit a 95Db alarm and all LED’s will blink.

F. To reset press yellow button on remote pressure gauge twice.

G. To alarm manually press red button on remote pressure gauge once.

H. To shut PAK alert off user must turn off and close the cylinder valve, bleed out excess air and press yellow button twice.

I. To test battery press yellow button on remote pressure gauge. Green LED will flash if batteries are good. Red LED will flash if batteries need to be replaced.

PASS DEVICE (PAL 5)

A. Used on the wire frame Air PAK’s.

B. Must be manually turned on.

C. Lack of motion for 30 seconds and the alarm will pre-alert.

D. Lack of motion for additional 10 seconds (total of 40 seconds lack of motion) and PAL will go into full alarm.

E. Powered by a nine volt battery.

F. To turn off, simply turn the unit off.

G. To go to full alarm, turn the unit to alarm.

H. The unit has a built in heat sensor

I. Gives off 95Db of sound.
A. SEMS is a user accountability system and a personal distress alarm

B. SEMS is equipped with a Personal Distress Alarm (PDA) and Personal Distress Receiver/Base Station (PDR).

C. PDA is integrated as part of the remote pressure gauge and Personal Alert Safety System (PASS).

D. PDR is a personal distress receiver/base station.

E. The equipment can transmit and receive specific information such as user identification, status, an evacuation alerts.

F. The PDA allows the user the following information:

1. Allows the user to know how much air is in the cylinder.

2. Set of status lights.

3. Four character digital display.

4. Three buttons

5. Warns user of 50% air supply
6. Sounds alarm of 25% air supply.

7. Connected to the pressure reducing regulator.

8. Gauge reads Empty in red, 10, 20, 30, Full in green. Also marked at ¼ which is 1125 psi left in cylinder.

9. Gauge should read within 100 psi of cylinder gauge.

10. Iridium dial glows in the dark.

11. This Iridium gauge will charge in direct sunlight or by using a flash light.

G. Bell end of service alarm

1. To warn the user that the cylinder has 25% of air remaining which is 1125 psi.

2. Will start to ring when ¼ cylinder of the air is remaining.

H. Scott Electronic Management Systems (SEMS)

1. Integrated Personal Alert System With Transceiver.
 a. Receive and Transmit information.
 b. Tracks activation of SCBA’s
 c. Tracks SCBA air supply.
 d. Tracks how long SCBA has been activated.
 e. Tracks SCBA in alarm.
 f. Ability to emergency recall personnel with alarm.
 g. Low battery notification.
 h. Off notification.
 i. SEMS has 9 letter words in display.

 - OK
 - EVAC
 - <<<<<< - Long on
 - X
 - X
 - X
 - X
 - X
 - X
2. **Blue Button**

 a. Blue button on SEMS is used to acknowledge transmissions.

I. **PDR – Personal Distress Receiver**

1. SEMS PDR Base Station is a compact battery operated device.

2. Digital display provides information about the status of the SCBA user and who is logged onto the base station.

EMERGENCY BREATHING SUPPORT SYSTEM (EBSS)
SINGLE EBSS FEMALE COUPLING IS PROTECTED BY NEOPRENE CAP.

REMOVE CAP OFF OF FEMALE COUPLING FOR DEPLOYMENT.
ONCE CONNECTED TO THE SINGLE EBSS THE
FIREFIGHTER USING THE PORT WILL NOT HAVE
HUD FUNCTIONS.

SINGLE EBSS WHEN USED WILL
PULL THE MASK AWAY FROM
THE FIREFIGHTER IN TROUBLE!
A. **Use of Single Emergency Breathing Support System (EBSS).**

1. Currently RFD SCBA’s are equipped with a single EBSS.
2. The single EBSS is to be used in an emergency situation only.

B. **EBSS Operation**

1. Notify IC, EBSS is being deployed and activate the RIC team.
2. Disconnect the EBSS of the SUPPLIER and move the hose to the left side.
3. USER moves to the left side of the SUPPLIER.
4. SUPPLIER will hand the EBSS hose to the user.
5. The USER will make the necessary connections.
 a. The USER disconnects MMR at the quick disconnect on the low pressure hose.
 b. USER makes the connection.
 c. Leave the hazardous area immediately.
4. The single EBSS allows the firefighter in distress to disconnect their MMR and connect into their partners EBSS to breathe off of their cylinder.
5. This is for rescue and escape purposes only.
6. **BE AWARE BOTH USERS ARE USING A SINGLE AIR SUPPLY WHICH WILL QUICKLY DETERIOATE.**
7. **CAUTION WHEN USING THE SINGLE EBSS THE USER FACE PIECE CAN AND MAY BECOME DISLODGE.**
8. **WHEN THE FACE MASK BECOMES DISLODGE AIR WILL ESCAPE AT A FASTER RATE AND DEPLET THE CYLINDER SUPPLY QUICKLY.**
A. The RIT-PAK II allows members to quickly supply air to a downed or trapped firefighter.

B. The RIT-PAK II Consists of the following:

 1. High pressure hose 10’ long with a RIC/UAC coupling.
 2. Low Pressure hose 6’ with a quick disconnect coupling.
 3. MMR with low pressure hose of 9” with male coupling.
 4. Spare Face Piece Mask.
 5. 45 Minute Cylinder at 4500 psi.
 6. Regulator valve.

C. The RIT-PAK II bag is designed to carried or dragged to the emergency location.

SCBA DONNING

A. The SCBA can be donned in many ways however, three standard methods are:
7. Over the head

8. From the jump seat

9. Coat method

B. Prior to donning make sure all straps are extended and not tangled, and donning switch is depressed.

1. Cylinder is turned on at the valve ratchet knob, min. 2 ½ turns.

2. At this point the Vibra-Alert will activate as will the Pak Alert (3 beeps and green flashing LED).

3. With cylinder valve pointing away from user, lift the SCBA straight up, valve now pointing up, making sure not to tangle the straps. Level SCBA out over head and allow shoulder straps to fall down over arms. Continue to move SCBA to back, with arms through shoulder straps.
 – Grasp shoulder adjusting straps and pull while shrugging the pack upwards to assist in adjusting SCBA.
 – Grasp waist straps and pull straight out, then buckle straps, take up slack using the same method as shoulder straps.

SCOTT MASK DONNING

A. Examine the face piece making certain all parts are present and not damaged.

B. Head straps should be fully extended.

C. Hold the head harness out of the way with one hand while placing the face piece on the face, chin in chin pocket.

D. Pull the head harness over the head and ensure the straps are lying flat against the head and neck and smooth out the harness.

E. Tighten the neck straps, then the temple straps, smooth out the harness and retighten neck strap as needed.

F. Manually check seal with palm of hand over mask.

SCBA OPERATION

A. Take MMR with red purge knob at 12:00 and place into mask opening.

B. Turn MMR counter clockwise a quarter turn, until lock tab locks into place with a “click”.

C. Inhale sharply to activate respirator.
D. Hold breath and listen for air, there should be no air flowing if seal is good.

E. If no movement for 20 sec. pre-alert will start, either bow or shake lower part of SCBA, near valve assemble, to reset motion sensor.

F. If PAK Alert alarms from lack of motion reset by pushing yellow button.

G. If at anytime any alarm system sounds for unknown reason leave hazardous area immediately.

CHANGING THE CYLINDER

A. Depleted or partially depleted, 3500psi, cylinders should be replaced with full cylinders as soon as possible.

B. Cylinder can be replaced by user or while wearing SCBA if user is assisted by a second individual.

C. Push in and close cylinder valve, clockwise.

D. Purge residual pressure using purge valve.

E. Remove high pressure hose from valve.

F. Press thumb release and disengage the cylinder latch.

G. Push the locking tab and release at cylinder valve.

H. Slide in a charged and undamaged cylinder, check hydro date and engage into the cylinder hanger.

I. Inspect the high pressure coupling of the SCBA to make certain the gasket seal is present and not damaged, if ok tighten the hose coupling to the cylinder valve, hand tight.

J. Charge system, check for leaks and standard daily checks.

CARE AND MAINTENANCE

A. Daily Check and After each use.

B. Inspect Scott Mask for damage.

C. Check voice amp. Battery level.

D. Inspect cylinder and PAK for dent, scraps, cuts, tear.

E. Make sure cylinder pressure above 3500 psi.

F. Check cylinder manufacture and hydro date:
– 15 year cylinder service life
– 3 years for older cylinders or 5 years for carbon fiber cylinders and cylinders manufactured after 2001

G. Check MMR seal for damage, donning switch is depressed, and purge closed.

H. Charge system:
– Check PAK Alert for three beeps, manual op, & motion op.
– Check vibralert, should sound when unit is charged and when unit is slowly purged.
– Check remote gauge pressure, should match cylinder pressure.

I. Make sure straps are fully extended and ready for next use, and donning switch is depressed.

J. Clean with warm water and Scott clean as needed.

K. Weekly disinfecting occurs on Saturdays, or as needed.

L. Batteries are changed semi-annually Jan. and July, or as needed.

M. Send cylinders needing hydrostatic testing to station 3.

N. Send empty cylinders to station 3 for recharging.

O. SCBA repairs - 12A

CLEANING MMR USING SCOTT MULTI-WASH

A. Thoroughly clean dirt and soil from all SCBA parts using soap and water, then rinse with clean water.

B. Disinfect and clean MMR by
– Depress donning switch, close purge valve, and spray 6 full pumps of straight Scott Multi-Wash into regulator opening.
– Make sure to also wet immediate area around the opening. Swirl to completely cover internal components.
– Turn regulator face down and shake out excess liquid. Let stand for 10 minutes for disinfectant to work.
– Rinse with clean water using a spray bottle, do not submerge regulator.
– Shake out excess water and allow to completely dry prior to covering MMR with dust cover
– Open purge valve, if water droplets come out of spray bar the MMR needs more time to dry

TIMED TESTING

A. Donning Speed
 – In full turnouts, firefighter must don SCBA, breath air, and have all PPE (helmet, glove, etc) on properly within 60 seconds.

B. Each individual needs an idea of air consumption, resting and working.

C. How long will a full 30 minute cylinder last for you?
 – How long will you have to get out after low air vibralert activates?
 – Remember, practice, practice, practice like your life depends on it, because it does

RE-FILLNG CYLINDERS

I. The cylinders can be filled at the following locations:
 A. Station 3
 B. Breathing Support 12
 C. Riverside County Fire Department Breathing Supports
 D. Grand Terrace Rescue 23
 E. Loma Linda Breathing Support 251
REFERENCES:

- Scott Health and Safety User Manuals
- City of Riverside Fire Administrative Manual
- City of Riverside Fire Policies and Procedures Manual
- City of Riverside Practical Applications Manual
- City of Riverside Fire Department Respiratory Program
- IFSTA
- NFPA 1981
- Captain Mitch Wesche Powerpoint 2006.
- Engineer Steve Scott SCBA Spiel
- Firefighter/Paramedic Chris Stamper SCBA Spiel modified.
- Firefighter Dave Nash SCBA Spiel modified.
- Chief Bock’s Drop Bag Memo 2002.