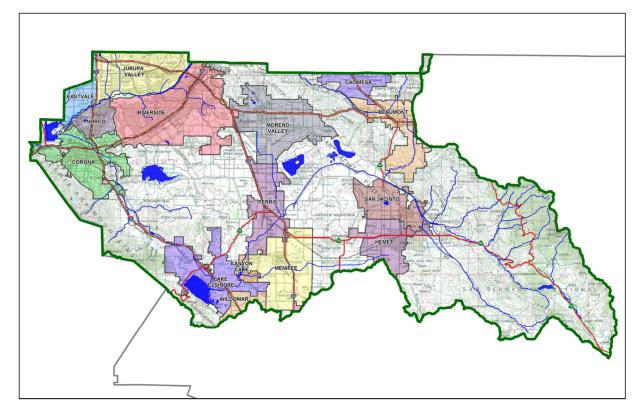


Mission Grove Apartments Project

Draft Environmental Impact Report SCH#2022100610

Appendix G: Project Specific Water Quality Management Plan


Project Specific Water Quality Management Plan

A Template for Projects located within the Santa Ana Watershed Region of Riverside County

Project Title: 375 Alessandro Boulevard

Development No: GP-2022-11040

Design Review/Case No: PR-2022-001359

Contact Information:

Prepared for:

Anton Mission Grove, LLC 1676 N California Blvd, Suite 250 Walnut Creek, CA 94596 Phone: (650) 549-1613

Prepared by:

Rick Engineering Company 1770 Iowa Avenue, Suite 100 Riverside, CA 92507 Phone: (951) 782-0707

☑ Preliminary ☐ Final

Original Date Prepared: 6/3/2022

Revision Date(s): 8/25/2022

Prepared for Compliance with Regional Board Order No. <u>R8-2010-0033</u> <u>Template revised June 30, 2016</u>

OWNER'S CERTIFICATION

This Project-Specific Water Quality Management Plan (WQMP) has been prepared for Anton Mission Grove, LLC by Rick Engineering Company for the Mission Grove Apartments project.

This WQMP is intended to comply with the requirements of the City of Riverside for Design Review, Planning Case No. PR-2022-001359 which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under City of Riverside Water Quality Ordinance (Municipal Code Section 14.12.315).

"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

Owner's Signature

Michelle Rubin

Owner's Printed Name

November 30, 2022

President

Owner's Title/Position

PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. **R8-2010-0033** and any subsequent amendments thereto."

Preparer's Signature

Kristin Werksman Preparer's Printed Name

201 2027

Date Associate <u>Associate</u> Preparer's Title/Position

Preparer's Licensure:

Table of Contents

Section A: Project and Site Information	6
 A.1 Maps and Site Plans A.2 Identify Receiving Waters A.3 Additional Permits/Approvals required for the Project: 	7 7
Section B: Optimize Site Utilization (LID Principles)	8
Section C: Delineate Drainage Management Areas (DMAs)	10
Section D: Implement LID BMPs	
D.1 Infiltration Applicability	
D.2 Harvest and Use Assessment	
D.3 Bioretention and Biotreatment Assessment D.4 Feasibility Assessment Summaries D.5 LID BMP Sizing	16
Section E: Alternative Compliance (LID Waiver Program)	
Section F: Hydromodification	20
F.1 Hydrologic Conditions of Concern (HCOC) Analysis	
F.2 HCOC Mitigation	
Section G: Source Control BMPs	
Section H: Construction Plan Checklist	25
Section I: Operation, Maintenance and Funding	26

List of Tables

7
7
10
10
10
11
11
12
16
17
20
23
25

List of Appendices

Appendix 1: Maps and Site Plans	27
Appendix 2: Construction Plans	28
Appendix 3: Soils Information	29
Appendix 4: Historical Site Conditions	30
Appendix 5: LID Infeasibility	31
Appendix 6: BMP Design Details	32
Appendix 7: Hydromodification	33
Appendix 8: Source Control	34
Appendix 9: O&M	35
Appendix 10: Educational Materials	36 -

Section A: Project and Site Information

PROJECT INFORMATION				
Type of Project:	Multi-Family Residential			
Planning Area:	Ward 4			
Community Name:	Mission Grove			
Development Name:	375 Alessandro Boulevard			
PROJECT LOCATION				
Latitude & Longitude (DMS):	33°54'48.86"N, 117°19'31.59"W			
Project Watershed and Sub-	Watershed: Santa Ana; Santa Ana River, Reach 3			
Gross Acres: 9.9 Acres APN(s): 276-110-018				
Map Book and Page No.: Boo	ok 173, Page 46-50			
PROJECT CHARACTERISTICS				
Proposed or Potential Land L	Jse(s)	Multi-F	amily Residential	
Proposed or Potential SIC Co	de(s)	1522		
Area of Impervious Project F	ootprint (SF)	475,193	1 SF	
Total Area of <u>proposed</u>	Impervious Surfaces within the Project Footprint (SF)/or	437,965	5 SF	
Replacement				
Does the project consist of o	ffsite road improvements?	Υ	N 🛛	
Does the project propose to	construct unpaved roads?	Υ	N 🛛	
Is the project part of a larger	common plan of development (phased project)?	☐ Y	N 🛛	
EXISTING SITE CHARACTERISTICS				
Total area of <u>existing</u> Imperv	ious Surfaces within the Project limits Footprint (SF)	437		
Is the project located within	any MSHCP Criteria Cell?	□ Y	N 🛛	
If so, identify the Cell number: N/A				
Are there any natural hydrol	ogic features on the project site?	Y	N 🛛	
Is a Geotechnical Report atta	nched?	🖂 Y	□ N	
If no Geotech. Report, list the	e NRCS soils type(s) present on the site (A, B, C and/or D)	Types C	Cand D	
What is the Water Quality De	esign Storm Depth for the project?	0.57 in		

A.1 Maps and Site Plans

When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a **minimum**, your WQMP Site Plan should include the following:

- Drainage Management Areas
- Proposed Structural BMPs
- Drainage Path
- Drainage Infrastructure, Inlets, Overflows
- Source Control BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Standard Labeling
- BMP Locations (Lat/Long)

Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps.

A.2 Identify Receiving Waters

Using Table A.1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1.

Table A.1 Identification of	Receiving Waters		
Receiving Waters	EPA Approved 303(d) List Impairments	Designated Beneficial Uses	Proximity to RARE Beneficial Use
<mark>Santa Ana River, Reach 3</mark>	Copper, Lead, Pathogens	AGR, GWR, REC1, REC2, WARM, WILD, RARE	6.3 Miles

A.3 Additional Permits/Approvals required for the Project:

Table A.2 Other Applicable Permits

Agency	Permit Re	quired
State Department of Fish and Game, 1602 Streambed Alteration Agreement	□ Y	N
State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert.	□ Y	N 🛛
US Army Corps of Engineers, CWA Section 404 Permit	<u>Г</u> ү	N
US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion	□ Y	N 🛛
Statewide Construction General Permit Coverage	×Υ	□ N
Statewide Industrial General Permit Coverage	□ Y	N 🛛
Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)	□ Y	N
Other (please list in the space below as required)	Υ	Z

If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

Section B: Optimize Site Utilization (LID Principles)

Review of the information collected in Section 'A' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, **constraints** might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. **Opportunities** might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others.

The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1.

Consideration of "highest and best use" of the discharge should also be considered. For example, Lake Elsinore is evaporating faster than runoff from natural precipitation can recharge it. Requiring infiltration of 85% of runoff events for projects tributary to Lake Elsinore would only exacerbate current water quality problems associated with Pollutant concentration due to lake water evaporation. In cases where rainfall events have low potential to recharge Lake Elsinore (i.e. no hydraulic connection between groundwater to Lake Elsinore, or other factors), requiring infiltration of Urban Runoff from projects is counterproductive to the overall watershed goals. Project proponents, in these cases, would be allowed to discharge Urban Runoff, provided they used equally effective filtration-based BMPs.

Site Optimization

The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

Did you identify and preserve existing drainage patterns? If so, how? If not, why?

Yes, the current site flows in a southwesterly direction. The proposed site will maintain the current drainage pattern,

Did you identify and protect existing vegetation? If so, how? If not, why?

Yes, the existing vegetation along the existing street frontage has been preserved where feasible. Landscape areas have been proposed on site throughout the parking lot and adjacent to buildings where possible.

Did you identify and preserve natural infiltration capacity? If so, how? If not, why?

Yes, however the existing site has minimal infiltration capacity. This is due to the existing site consisting mostly of a paved parking lot and roof of existing buildings.

Did you identify and minimize impervious area? If so, how? If not, why?

Yes, landscaped areas have been utilized wherever possible on the site.

Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why?

Yes, site runoff in the parking lot and roof runoff will be directed to the proposed Modular Wetlands Biofiltration systems.

Section C: Delineate Drainage Management Areas (DMAs)

Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C.1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications.

Table C.1 DMA Classifications					
DMA Name or ID	Surface Type(s) ¹²	Area (Sq. Ft.)	DMA Type		
A-1	Landscape	8,321	Туре А		
A-2	Landscape	37,754	Туре А		
D-1	Pavement, landscape	57,907	Type D		
D-2	Roofs, pavement, landscape	78,919	Type D		
D-3	Roofs, pavement, landscape	110,588	Type D		
D-4	Roofs, pavement, landscape	83,572	Type D		

¹Reference Table 2-1 in the WQMP Guidance Document to populate this column

²If multi-surface provide back-up

Table C.2 Type 'A', Self-Treating Areas

DMA Name or ID	Area (Sq. Ft.)	Stabilization Type	Irrigation Type (if any)
A-1	8,321	Landscape	Sprinkler
A-2	37,754	Landscape	Sprinkler

Table C.3 Type 'B', Self-Retaining Areas

Self-Retai	ning Area			Type 'C' DM Area	As that are drain	ning to the Self-Retaining
DMA Name/ ID	Post-project surface type	Area (square feet) [A]	Storm Depth (inches) [B]	DMA Name /	[C] from Table C.4 = [C]	Required Retention Depth (inches) [D]
N/A						

$$[D] = [B] + \frac{[B] \cdot [C]}{[A]}$$

DMA	, ,			Receiving Self-	Retaining DMA	
DMA Name/ ID	S Area (square feet)	Post-project surface type	 Product [C] = [A] x [B]	DMA name /ID	,	Ratio [C]/[D]
N/A						

Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas

Table C.5	Туре	'D', Areas	Draining to BMPs
-----------	------	------------	------------------

DMA Name or ID	BMP Name or ID
D-1	MWL-1
D-2	MWL-2
D-3	MWL-3
D-4	MWL-4

<u>Note</u>: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP.

Section D: Implement LID BMPs

D.1 Infiltration Applicability

Is there an approved downstream 'Highest and Best Use' for stormwater runoff (see discussion in Chapter 2.4.4 of the WQMP Guidance Document for further details)? \Box Y \boxtimes N

If yes has been checked, Infiltration BMPs shall not be used for the site; proceed to section D.3

If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream 'Highest and Best Use' feature.

Geotechnical Report

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Copermittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document? \Box Y \boxtimes N

Infiltration Feasibility

Table D. A. I. Clauseland Table 1000

Table D.1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

Table D.1 Infiltration Feasibility		
Does the project site	YES	NO
have any DMAs with a seasonal high groundwater mark shallower than 10 feet?		Х
If Yes, list affected DMAs:		
have any DMAs located within 100 feet of a water supply well?		Х
If Yes, list affected DMAs:		
have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater could have a negative impact?		х
If Yes, list affected DMAs:		
have measured in-situ infiltration rates of less than 1.6 inches / hour?	Х	
If Yes, list affected DMAs: D-2 & D-4		
have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final infiltration surface?		Х
If Yes, list affected DMAs:		
geotechnical report identify other site-specific factors that would preclude effective and safe infiltration?	Х	
Describe here:		

If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below.

D.2 Harvest and Use Assessment

Please check what applies:

 \square Reclaimed water will be used for the non-potable water demands for the project.

 \Box Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee).

□ The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case, Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture Volume will be infiltrated or evapotranspired.

 \boxtimes None of the above

If any of the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If none of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet use and other non-potable uses (e.g., industrial use).

Irrigation Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Use BMPs on your site:

Step 1: Identify the total area of irrigated landscape on the site, and the type of landscaping used.

Total Area of Irrigated Landscape: 1.45 Acres

Type of Landscaping (Conservation Design or Active Turf): Conservation Design

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: 8.46 Acres

Step 3: Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA).

Enter your EIATIA factor: 0.52

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required.

Minimum required irrigated area: 4.40 Acres

Step 5: Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4).

Harvesting stormwater runoff is infeasible by steps 1-5 above.

Minimum required irrigated area (Step 4)	Available Irrigated Landscape (Step 1)
4.40 Acres	1.45 Acres

Toilet Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet flushing uses on your site:

Step 1: Identify the projected total number of daily toilet users during the wet season, and account for any periodic shut downs or other lapses in occupancy:

Projected Number of Daily Toilet Users: 694

Project Type: Residential

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for toilet use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: 8.46 Acres

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-2 in Chapter 2 to determine the minimum number or toilet users per tributary impervious acre (TUTIA).

Enter your TUTIA factor: 93

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of toilet users that would be required.

Minimum number of toilet users: 787

Step 5: Determine if harvesting stormwater runoff for toilet flushing use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

Harvesting stormwater runoff is infeasible by steps 1-5 above.

Minimum required Toilet Users (Step 4)	Projected number of toilet users (Step 1)
787	694

Other Non-Potable Use Feasibility

Are there other non-potable uses for stormwater runoff on the site (e.g. industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A.

N/A

Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation.

Average Daily Demand: 0

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: 8.46 Acres

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table
 2-4 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre.

Enter the factor from Table 2-4: 869

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of gallons per day of non-potable use that would be required.

Minimum required use: 7,352

Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the projected average daily use (Step 1) to the minimum required non-potable use (Step 4).

Minimum required non-potable use (Step 4)	Projected average daily use (Step 1)
7,352	0

If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment per Section 3.4.2 of the WQMP Guidance Document.

D.3 Bioretention and Biotreatment Assessment

Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance Document are feasible on nearly all development sites with sufficient advance planning.

Select one of the following:

 \boxtimes LID Bioretention/Biotreatment BMPs will be used for some or all DMAs of the project as noted below in Section D.4 (note the requirements of Section 3.4.2 in the WQMP Guidance Document).

 \Box A site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee to discuss this option. Proceed to Section E to document your alternative compliance measures.

D.4 Feasibility Assessment Summaries

From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D.2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

	ble D.2 LID Prioritization Summary Matrix									
		No LID								
DMA					(Alternative					
Name/ID	1. Infiltration	2. Harvest and use	3. Bioretention	4. Biotreatment	Compliance)					
D-1				\square						
D-2				\square						
D-3				\square						
D-4				\square						

 Table D.2 LID Prioritization Summary Matrix

For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

Insert narrative description here.

D.5 LID BMP Sizing

Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the V_{BMP} worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required V_{BMP} using a method approved by the Copermittee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Copermittee to assist you in correctly sizing your LID BMPs. Complete Table D.3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

1		DMA	Post-			DMA			
	DMA Type/ID	Area (square feet)	Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	Areas x Runoff Factor	MWS Linear / MWL-1		
		[A]		[B]	[C]	[A] x [C]			
	D-1	57907	Mixed Surface Types	1	0.89	51,653	Design Rainfall Intensity (in/hr)	Design Flow Rate, CFS (cubic feet per second)	Proposed Flow Rate (cubic feet per second)
		57,907				51,653	0.20	0.2	0.462

Table D.3 DCV Calculations for LID BMPs

DMA Type/ID	DMA Area (square feet)	Post- Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	MWS Linear / MWL-2		
	[A]		[B]	[C]	[A] x [C]			
D-2	78919	Mixed Surface Types	1	0.89	70395.7	Design Rainfall Intensity (in/hr)	Design Flow Rate, CFS (cubic feet per second)	Proposed Flow Rate (cubic feet per second)
	78919				70395.7	0.20	0.3	0.346

DMA Type/ID	DMA Area (square feet) [A]	Post- Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor	DMA Areas x Runoff Factor [A] x [C]	MWS Lin	MWS Linear / MWL-3	
D-3	110,588	Mixed Surface Types	0.9	0.73	80760.4	Design Rainfall Intensity (in/hr)	Design Flow Rate, CFS (cubic feet per second)	Proposed Flow Rate (cubic feet per second)
	110588				80760.4	0.20	0.4	0.462

DMA Type/ID	DMA Area (square feet) [A]	Post- Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor	DMA Areas x Runoff Factor [A] x [C]	MWS Lin	MWS Linear / MWL-4	
D-4	83,572	Mixed Surface Types	1	0.89	7456.2	Design Rainfall Intensity (in/hr)	Design Flow Rate, CFS (cubic feet per second)	Proposed Flow Rate (cubic feet per second)
	83572				74546.2	0.20	0.3	0.462

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

Section E: Alternative Compliance (LID Waiver Program)

LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Copermittee). Check one of the following Boxes:

☐ LID Principles and LID BMPs have been incorporated into the site design to fully address all Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed.

- Or -

□ The following Drainage Management Areas are unable to be addressed using LID BMPs. A site-specific analysis demonstrating technical infeasibility of LID BMPs has been approved by the Co-Permittee and included in Appendix 5. Additionally, no downstream regional and/or sub-regional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated.

List DMAs here.

Section F: Hydromodification

F.1 Hydrologic Conditions of Concern (HCOC) Analysis

Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure 3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2.

HCOC EXEMPTION 1: The Priority Development Project disturbs less than one acre. The Copermittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development.

Does the project qualify for this HCOC Exemption? $\Box Y = \bigotimes N$

If Yes, HCOC criteria do not apply.

HCOC EXEMPTION 2: The volume and time of concentration¹ of storm water runoff for the postdevelopment condition is not significantly different from the pre-development condition for a 2-year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate:

- Riverside County Hydrology Manual
- Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or derivatives thereof, such as the Santa Barbara Urban Hydrograph Method
- Other methods acceptable to the Co-Permittee

Does the project qualify for this HCOC Exemption?

X N

If Yes, report results in Table F.1 below and provide your substantiated hydrologic analysis in Appendix 7.

	2 year – 24 hour					
	Pre-condition	Post-condition	% Difference			
Time of Concentration	INSERT VALUE	INSERT VALUE	INSERT VALUE			
Volume (Cubic Feet)	26,782	26,782	0%			

¹ Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet.

HCOC EXEMPTION 3: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Susceptibility Maps.

Does the project qualify for this HCOC Exemption?

If Yes, HCOC criteria do not apply and note below which adequate sump applies to this HCOC qualifier:

F.2 HCOC Mitigation

If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions:

- a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis.
- b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters.
- c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the predevelopment 2-year peak flow.

Be sure to include all pertinent documentation used in your analysis of the items a, b or c in Appendix 7.

Section G: Source Control BMPs

Source control BMPs include permanent, structural features that may be required in your project plans — such as roofs over and berms around trash and recycling areas — and Operational BMPs, such as regular sweeping and "housekeeping", that must be implemented by the site's occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site:

- 1. *Identify Pollutant Sources*: Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site.
- 2. **Note Locations on Project-Specific WQMP Exhibit:** Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1.
- 3. **Prepare a Table and Narrative:** Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G.1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. Add additional narrative in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs.
- 4. Identify Operational Source Control BMPs: To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site.

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
Interior floor drains and elevator shaft sump pumps	Parking garage floor drains to be conveyed to storm drain per City direction	Inspect and maintain drains to prevent blockages and overflow.
Need for future indoor & structural pest control	Note building design features that discourage entry of pests	Provide Integrated Pest Management information to owners, lessees, and operators
Landscape/Outdoor Pesticide Use	All final landscape plans will accomplish the following:	Maintain landscaping using minimum or no pesticides.
	Preserve existing native trees, shrubs, and ground cover to the maximum extent possible. Design landscaping to minimize	See applicable operational BMPs in "What you should know forLandscape and Gardening" at http://rcflood.org/stormwater/.
	irrigation and runoff, to promote surface infiltration where	Provide IPM information to new
	appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution	owners, lessees, and operators. Only nitrogen stabilized liquid fertilizers shall be used.
	Where landscaped areas are used to retain or detain stormwater, specify plants that are tolerant of saturated soil conditions.	Use of irrigation and pesticides shall be kept to a minimum.
	Consider using pest-resistant plants, especially adjacent to hardscape.	
	To insure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, and use, air movement, ecological consistency, and plant interactions.	
Outdoor storage of equipment or materials	No outdoor storage is anticipated for this site	N/A
Vehicle and Equipment Cleaning	Car wash areas are not provided and on-site car washing shall be prohibited and monitored by the property owner	N/A
Vehicle and Equipment Repair and Maintenance	No vehicle repair or maintenance will be done	N/A

Table G.1 Permanent and Operational Source Control Measures

Condensation Drain Lines Roofing, gutters, and trim	outdoors and this shall be monitored by the property owner No condensation lines are proposed in this project	
	Avoid roofing, gutters and trim made of copper or other unprotected metals that may leach into runoff	
Plazas, Sidewalks, and Parking Lots	It is the responsibility of the property owner to clean common areas and prohibit littering	Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer, not to a storm drain.
Fire Sprinkler	Fire sprinkler test water to drain to sanitary sewer	

Section H: Construction Plan Checklist

Populate Table H.1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

BMP No. or ID	BMP Identifier and Description	Corresponding Plan Sheet(s)	BMP Location (Lat/Long)
MWL-1	Bioclean Modular Wetland	PWQMP Exhibit	33°54'50.94"N, 117°19'34.17"W
MWL-2	Bioclean Modular Wetland	PWQMP Exhibit	33°54'50.96"N, 117°19'33.75"W
MWL-3	Bioclean Modular Wetland	PWQMP Exhibit	33°54'47.24"N, 117°19'35.48"W
MWL-4	Bioclean Modular Wetland	PWQMP Exhibit	33°54'47.25"N, 117°19'35.38"W

 Table H.1 Construction Plan Cross-reference

Note that the updated table — or Construction Plan WQMP Checklist — is **only a reference tool** to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.

Section I: Operation, Maintenance and Funding

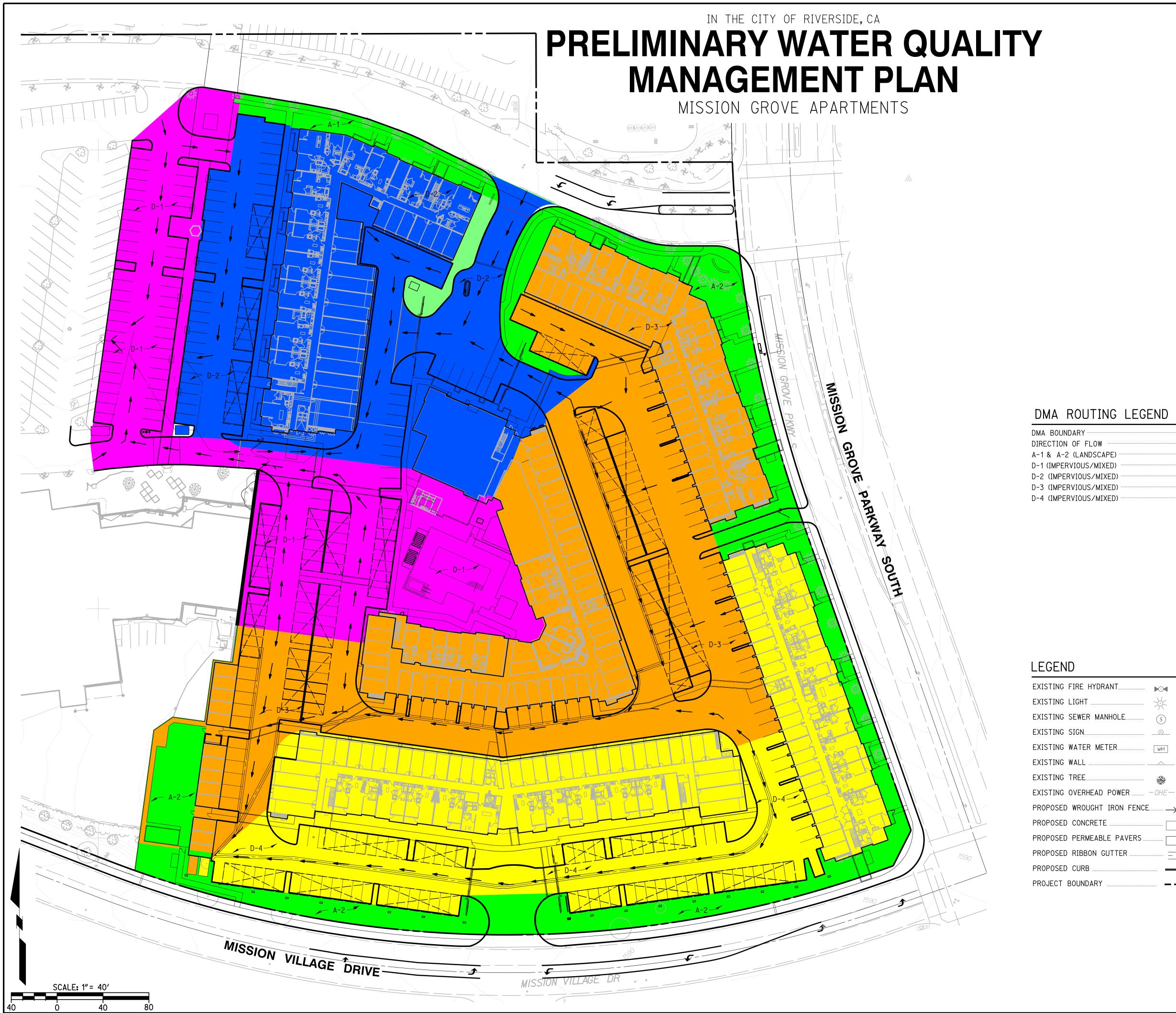
The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

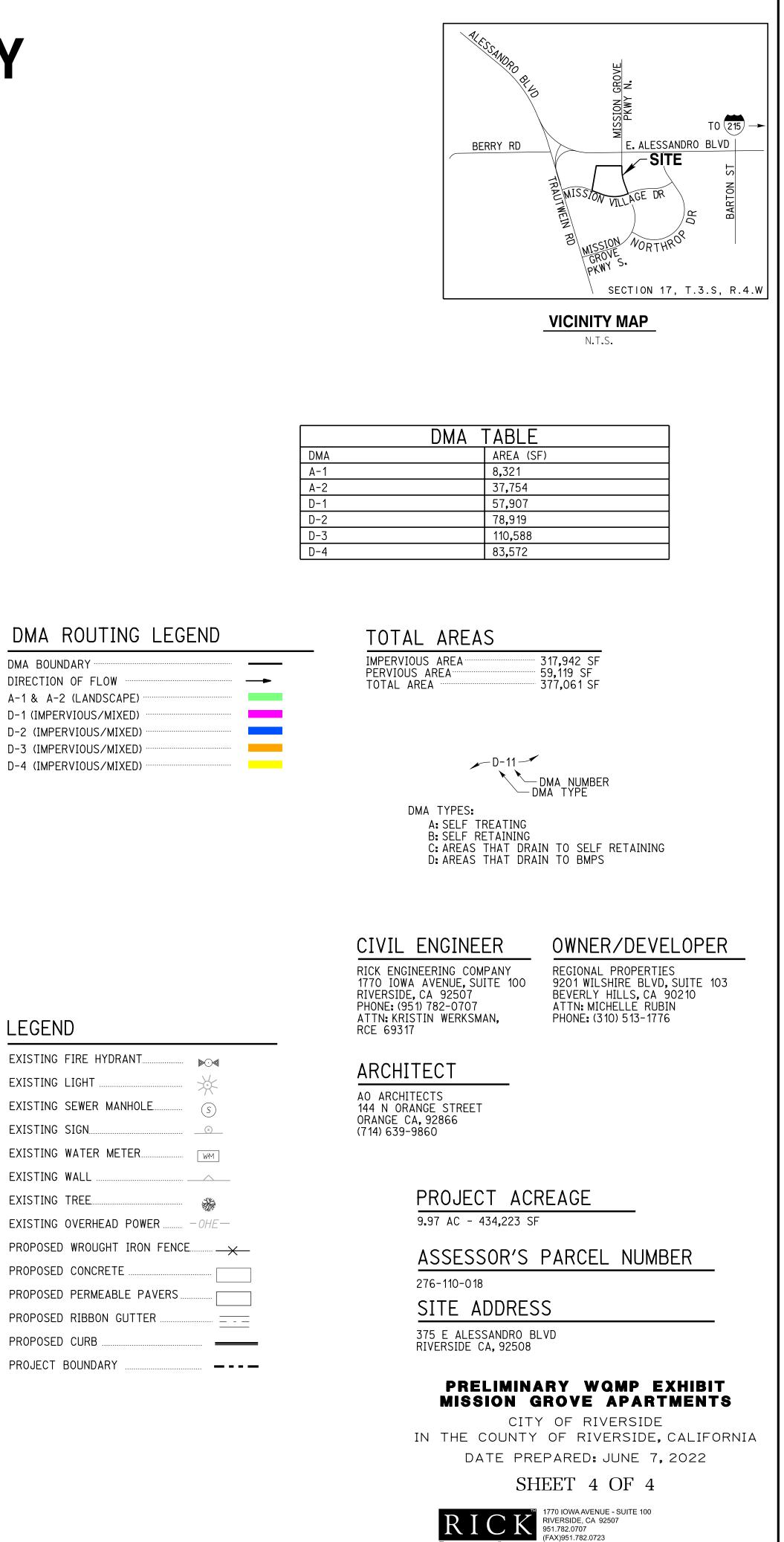
- 1. A means to finance and implement facility maintenance in perpetuity, including replacement cost.
- 2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
- 3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
- 4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geolocating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
- 5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas.

Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document.

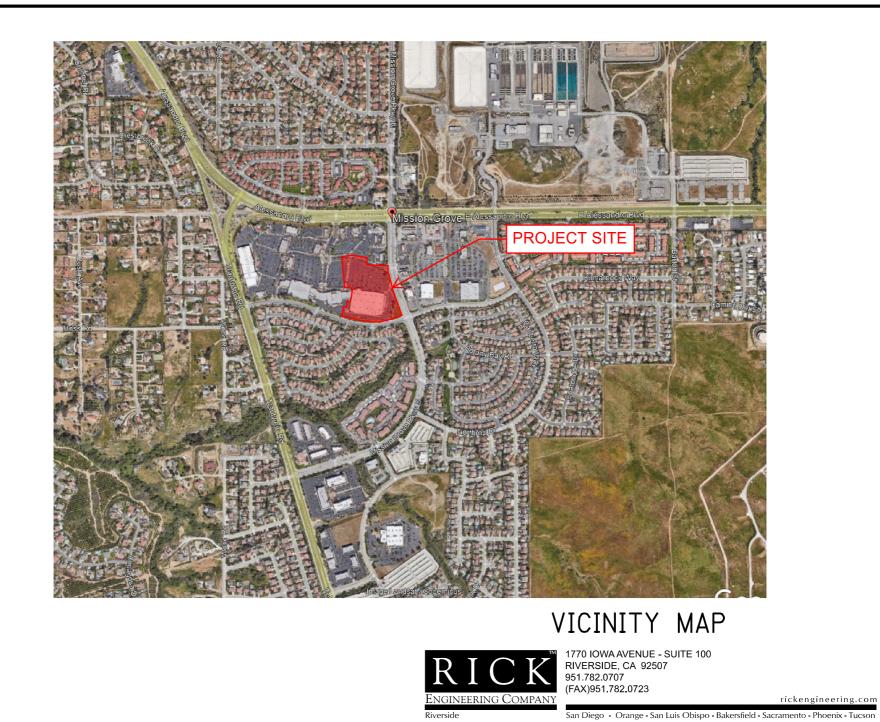
Maintenance Mechanism: Property owner will maintain


Will the proposed BMPs be maintained by a Home Owners' Association (HOA) or Property Owners Association (POA)?

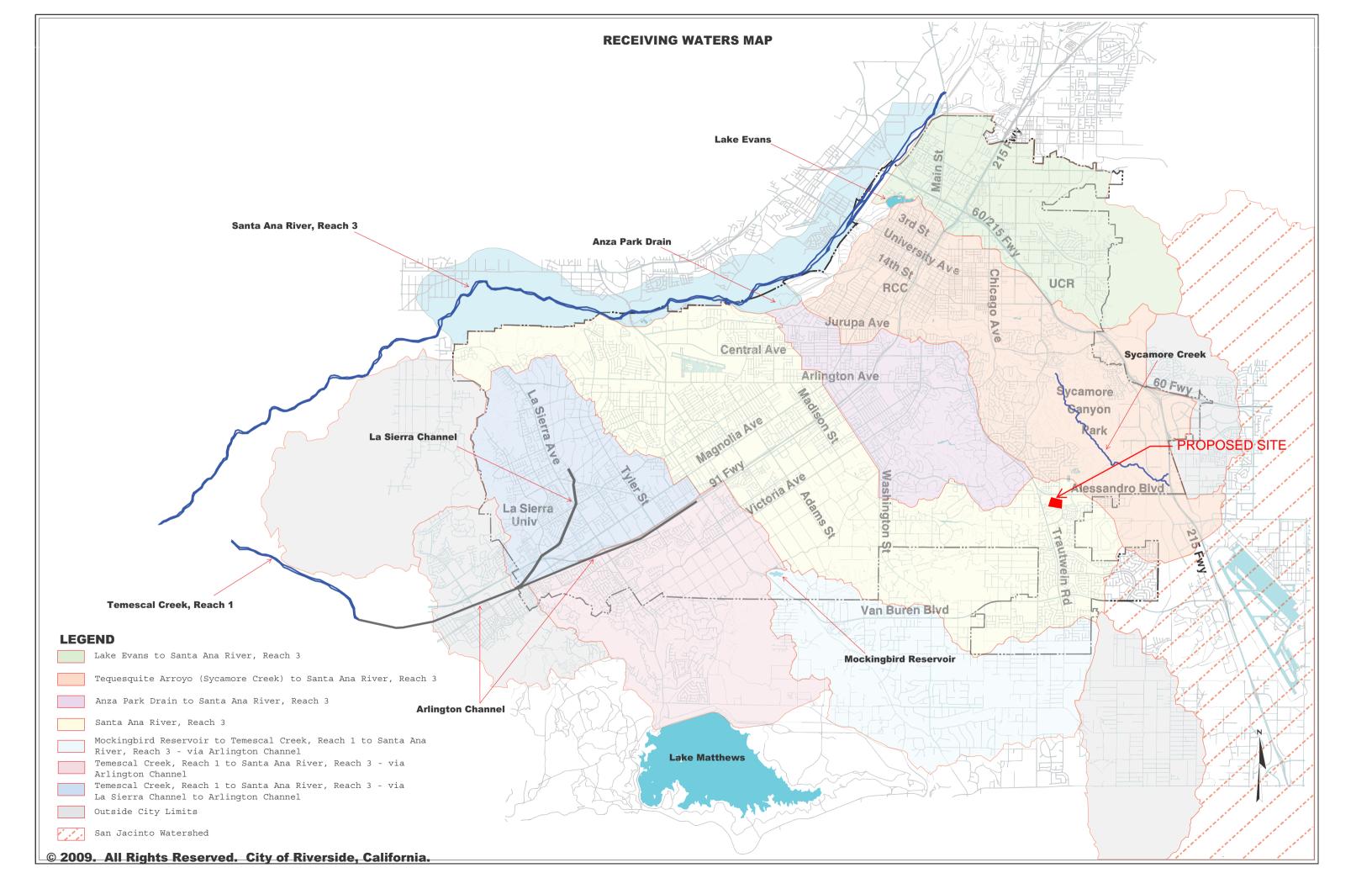


Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.

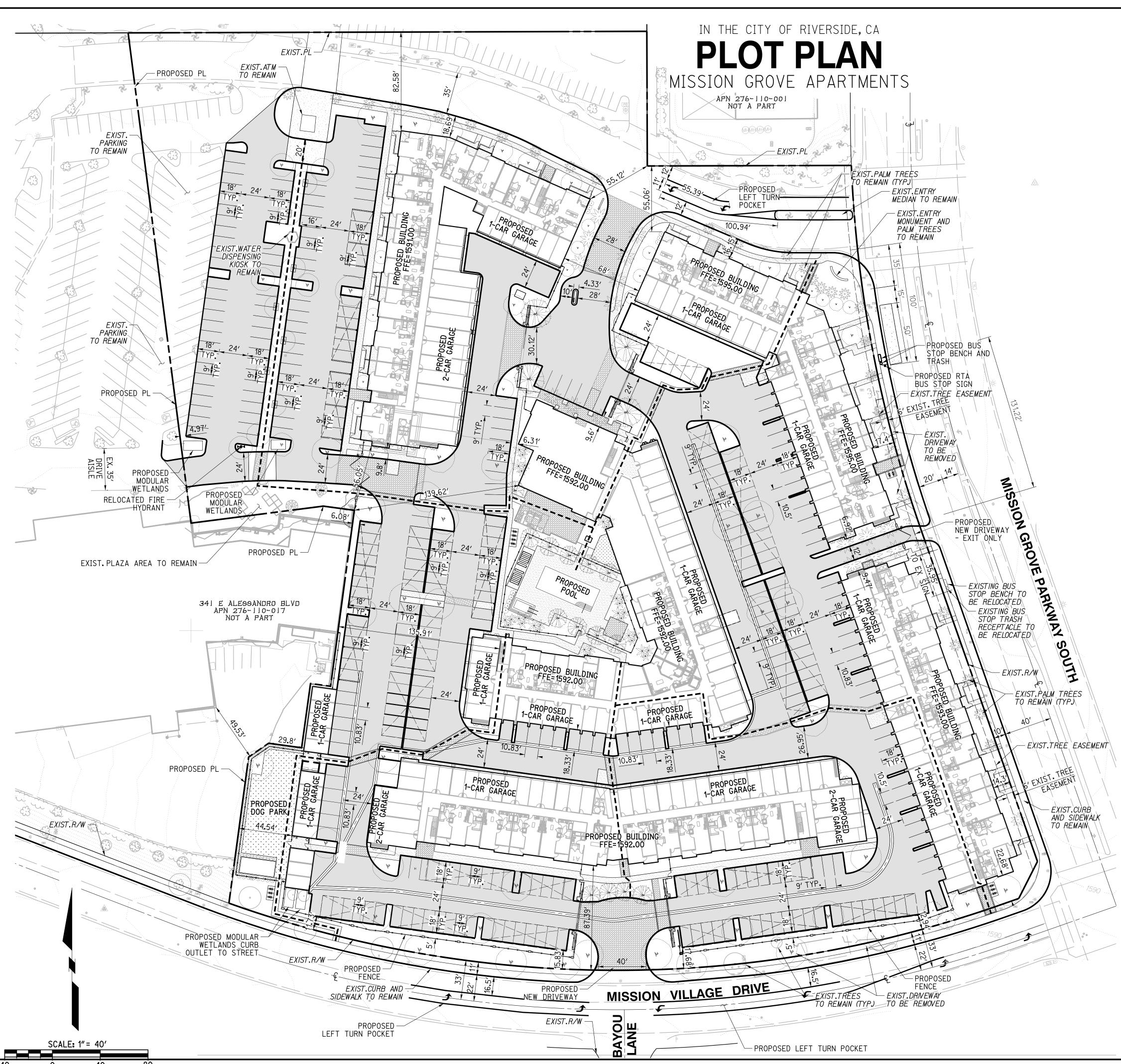
Appendix 1: Maps and Site Plans


Location Map, WQMP Site Plan and Receiving Waters Map

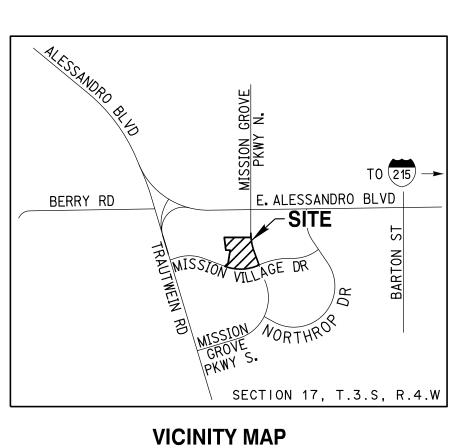
PLOT DATE: 01-SEP-2022 JN 19550A


2022 Rick Enginee

© 2022 Rick Engineering Company


\\cp.rickeng.com\projects\C19500\19550_MissionGrove_Kmart\19550-A\WaterRes\19550A_Vicinity Map.dgn

PLOT DATE: 08-JUN-2022 JN 1



Appendix 2: Construction Plans

Grading and Drainage Plans

\40.rickeng.com\pojects\C19500409550_MissionGr&0e_Kmart\19550-A\CiviNExhibits\19550Aent01_Plot_Plan.dgn

N.T.S.

LEGEND

EXISTING FIRE HYDRANT	
EXISTING LIGHT	×
EXISTING SEWER MANHOLE	S
EXISTING SIGN	*
EXISTING WATER METER	/M
EXISTING WALL	<u> </u>
EXISTING PALM TREE	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.
EXISTING TREE	$\overline{}$
PROPOSED SITE LIGHT	(-
PROPOSED WROUGHT IRON FENCE	···· · × ·
PROPOSED CONCRETE	
PROPOSED AC PAVEMENT	
PROPOSED DECORATIVE PAVERS	
PROPOSED RIBBON GUTTER	
PROPOSED CURB	
PROPOSED PATH OF TRAVEL	
PROJECT BOUNDARY	

CIVIL ENGINEER

RICK ENGINEERING COMPANY 1770 IOWA AVENUE, SUITE 100 RIVERSIDE, CA 92507 PHONE: (951) 782-0707 ATTN: KRISTIN WERKSMAN, RCE 69317

ARCHITECT

AO ARCHITECTS 144 N ORANGE STREET ORANGE CA, 92866 (714)639-9860

DEVELOPER

ANTON MISSION GROVE,LLC 1676 N CALIFORNIA BLVD,SUITE 250 WALNUT CREEK,CA 94596 PHONE:(650)549-1613

OWNER

REGIONAL PROPERTIES 9201 WILSHIRE BLVD, SUITE 103 BEVERLY HILLS, CA 90210 ATTN: MICHELLE RUBIN PHONE: (310) 513-1776

PROJECT ACREAGE

9.92 AC - 432,115 SF

ASSESSOR'S PARCEL NUMBER

276-110-018

SITE ADDRESS

375 E ALESSANDRO BLVD RIVERSIDE CA, 92508

 \mathbf{N}

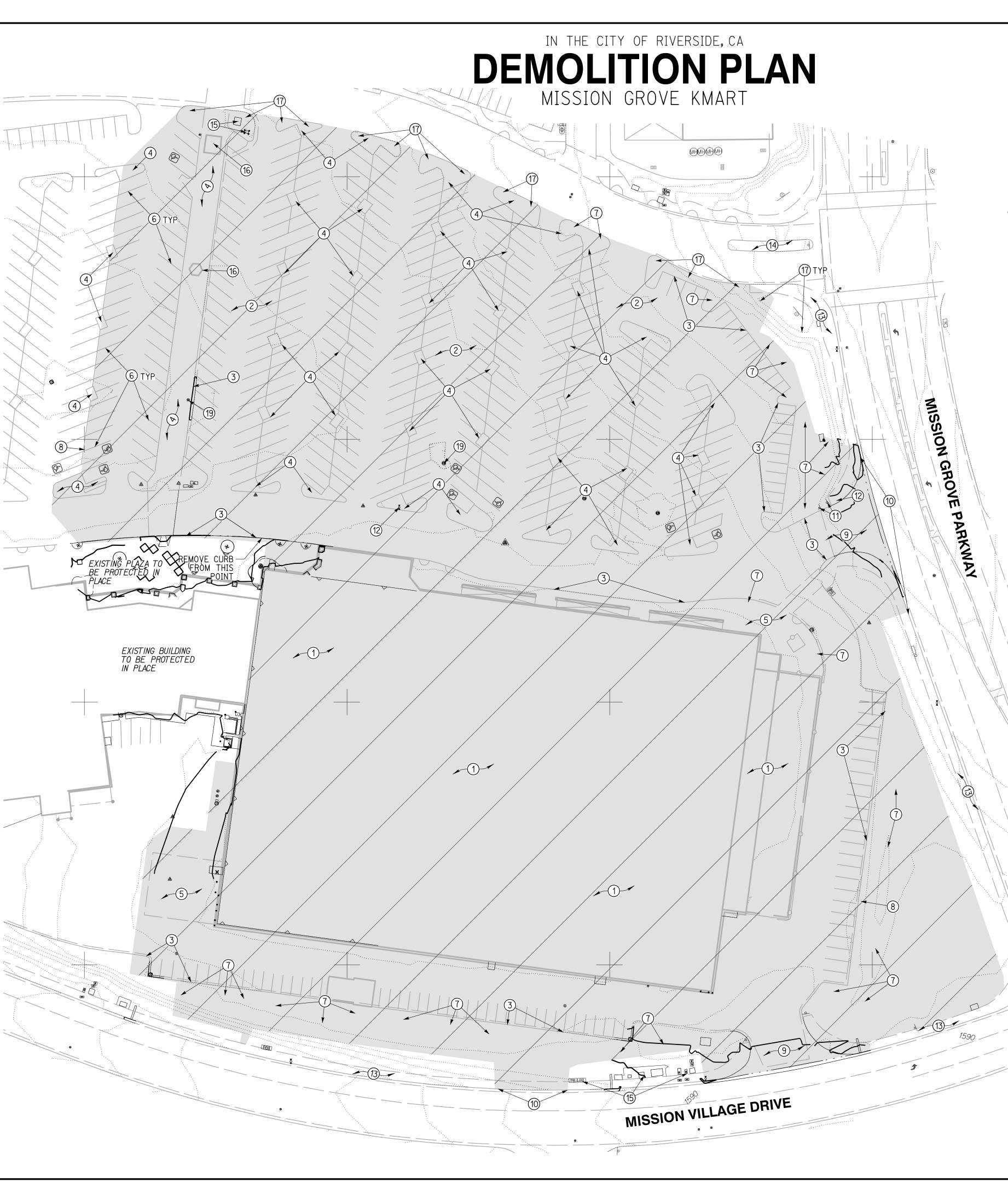
PLOT PLAN Mission grove apartments

CITY OF RIVERSIDE IN THE COUNTY OF RIVERSIDE, CALIFORNIA DATE PREPARED: JUNE 7, 2022 DATE REVISED: AUGUST 5, 2022

951 782 0707

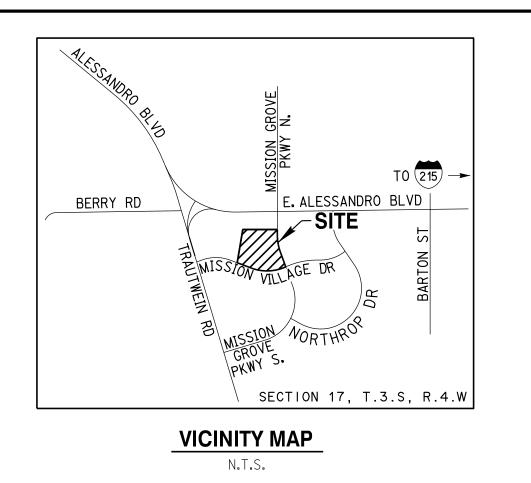
(FAX)951.782.0723

322 Rick Engineering


Orange - San Luis Obispo - Bake

DEMOLITION LEGEND

LIMITS OF DEMOLITION ·


EXISTING	TOPO	LEGEND

EXISTING	TREE	**
EXISTING	FIRE HYDRANT	
EXISTING	ELECTRICAL	EM
EXISTING	SIGN	_0_
EXISTING	ELECTRICAL VAULT	EV
EXISTING	GAS VALVE	GV
EXISTING	WATER METER	WM
EXISTING	WATER VALVE	\oplus
EXISTING	IRRIGATION VALVE	$\bigotimes_{\rm IRR}$
EXISTING	POWER POLE	-@-
EXISTING	OVERHEAD POWER	-ОНЕ —
EXISTING	SEWER MANHOLE	S
EXISTING	WATER	W
EXISTING	SEWER	— S —
EXISTING	ELECTRICAL	— E —
EXISTING	GAS	— G —
EXISTING	TELEPHONE	— T —
EXISTING	WALL	\frown
EXISTING	R/W	

\\cp.rickeng.com\projects\C19500\19550_MissionGrove_Kmart\19550-A\CiviNExhibits\19550Aent06_Demo_Plan.dgn

SCALE: 1" = 40"

DEMOLITION NOTES

1 REMOVE EXISTING BUILDING
② REMOVE EXISTING ASPHALT CONCRETE
3 REMOVE EXISTING CURB
(4) REMOVE EXISTING PLANTER ISLAND CURB AND TREES
5 REMOVE EXISTING CONCRETE
6 REMOVE EXISTING PARKING LOT STRIPING
(7) REMOVE EXISTING TREE
8 REMOVE EXISTING LIGHT POLE
(9) REMOVE EXISTING DRIVEWAY
10 REMOVE EXISTING CURB AND GUTTER
11 REMOVE EXISTING SIGN
(12) RELOCATE EXISITNG UTILITY
(13) EXISTING SIDEWALK TO BE PROTECTED IN PLACE
(14) EXISTING MEDIAN TO BE PROTECTED IN PLACE
(15) EXISTING UTILITY TO BE PROTECTED IN PLACE
(16) EXISTING BUILDING TO BE PROTECTED IN PLACE
① EXISTING TREE TO BE PROTECTED IN PLACE
(18) EXISTING CURB TO BE PROTECTED IN PLACE
(19) EXISTING STORM DRAIN TO BE PROTECTED IN PLACE

CIVIL ENGINEER

RICK ENGINEERING COMPANY 1770 IOWA AVENUE, SUITE 100 RIVERSIDE, CA 92507 PHONE: (951) 782-0707 ATTN: KRISTIN WERKSMAN, RCE 69317

OWNER/DEVELOPER

REGIONAL PROPERTIES 9201 WILSHIRE BLVD, SUITE 103 BEVERLY HILLS, CA 90210 ATTN: MICHELLE RUBIN PHONE: (310) 513-1776

ARCHITECT

1590

AO ARCHITECTS 144 N ORANGE STREET ORANGE CA, 92866 (714) 639-9860

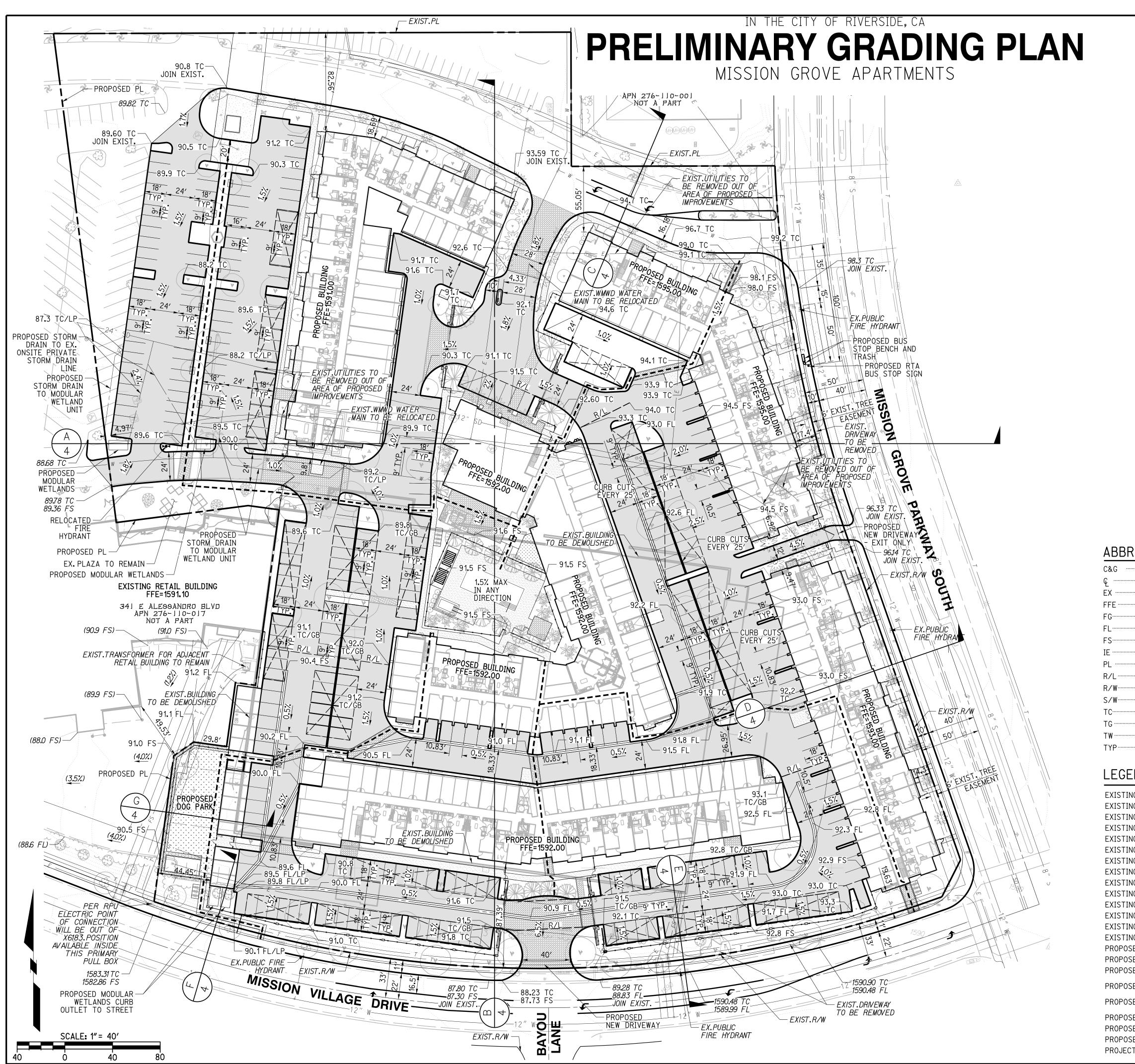
PROJECT ACREAGE 9.97 AC - 434,223 SF

ASSESSOR'S PARCEL NUMBER

276-110-018 SITE ADDRESS

375 E ALESSANDRO BLVD RIVERSIDE CA,92508

DEMOLITION PLAN Mission grove kmart


CITY OF RIVERSIDE

IN THE COUNTY OF RIVERSIDE, CALIFORNIA DATE PREPARED: MAY 24, 2022

SHEET 2 OF 5

1770 IOWA AVENUE - SUITE 100 RIVERSIDE, CA 92507 951.782.0707 $\bigcap K$ (FAX)951.782.0723

PLOT DATE: 05-AUG-2022 JN 19550A

\\cp.rickeng.com\projects\C19500\19550_MissionGrove_Kmart\19550-A\Civi\Exhibits\19550Aent02_Prelim_Grading_Plan.dgn

ABBREVIATIONS

C&G CURB AND GUTTER
င္ ······ CENTERLINE
EX ······ EXISTING
FFE FINISHED FLOOR ELEVATION
FG FG FINISHED GRADE ELEVATION
FL FLOW LINE ELEVATION
FS FINISHED SURFACE ELEVATION
IE INVERT ELEVATION
PL PROPERTY LINE
R/L RIDGELINE
R/W
S/W······SIDEWALK
TC TOP OF CURB ELEVATION
TG TOP OF GRATE ELEVATION
TW TOP OF WALL ELEVATION
TYP TYPICAL

LEGEND

EXISTING ELECTRICAL
EXISTING ELECTRICAL VAULT
EXISTING GAS VALVE \odot
EXISTING IRRIGATION VALVE \cdots
EXISTING LIGHT
EXISTING POWER POLE
EXISTING SEWER MANHOLE
EXISTING SIGN
EXISTING TREE
EXISTING WATER METER
EXISTING WALL
EXISTING WATER VALVE \oplus
EXISTING PALM TREE
EXISTING TREE
PROPOSED SITE LIGHT
PROPOSED WROUGHT IRON FENCE
PROPOSED CONCRETE
PROPOSED AC PAVEMENT
PROPOSED DECORATIVE PAVERS
PROPOSED RIBBON GUTTER
PROPOSED CURB
PROPOSED PATH OF TRAVEL
PROJECT BOUNDARY

ESTIMATED GRADING QUANTITIES

ESTIMATED EXCAVATION: ESTIMATED EMBANKMENT: 5,118 C.Y. 5,950 C.Y.

NOTE: THE GRADING QUANTITIES SHOWN HEREON ARE RAW QUANTITIES FOR PERMIT PURPOSES ONLY AND ARE NOT TO BE USED FOR FINAL PAY QUANTITIES. THIS PROJECT IS DESIGNED TO BALANCE.

CIVIL ENGINEER

RICK ENGINEERING COMPANY 1770 IOWA AVENUE, SUITE 100 RIVERSIDE, CA 92507 PHONE: (951) 782-0707 ATTN: KRISTIN WERKSMAN, RCE 69317

ARCHITECT

AO ARCHITECTS 144 N ORANGE STREET ORANGE CA, 92866 (714) 639-9860

ANTON MISSION GROVE, LLC

DEVELOPER

1676 N CALIFORNIA BLVD, SUITE 250 WALNUT CREEK, CA 94596 PHONE: (650) 549-1613

OWNER

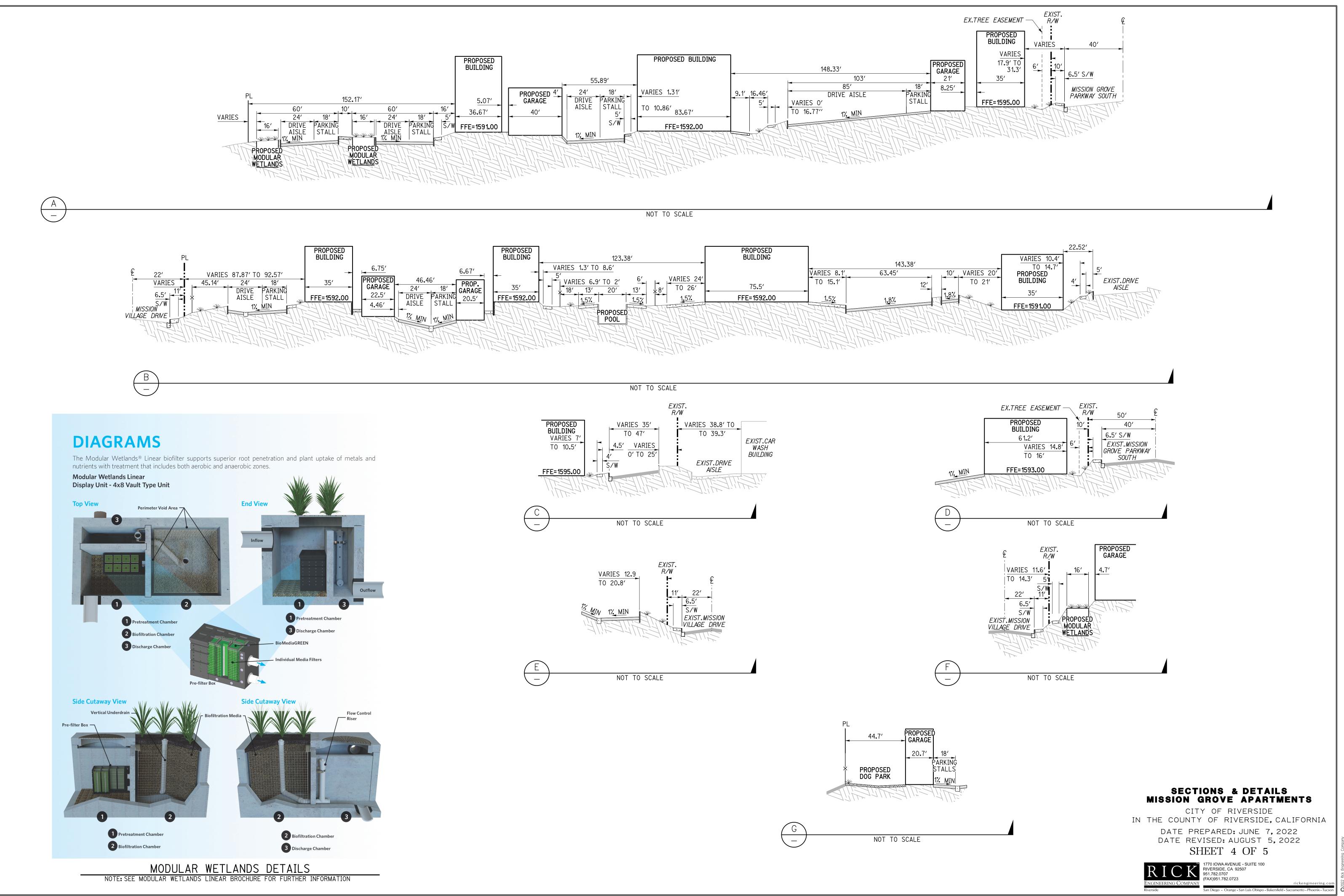
REGIONAL PROPERTIES 9201 WILSHIRE BLVD, SUITE 103 BEVERLY HILLS, CA 90210 ATTN: MICHELLE RUBIN PHONE: (310) 513-1776

PROJECT ACREAGE 9.92 AC - 432,115 SF

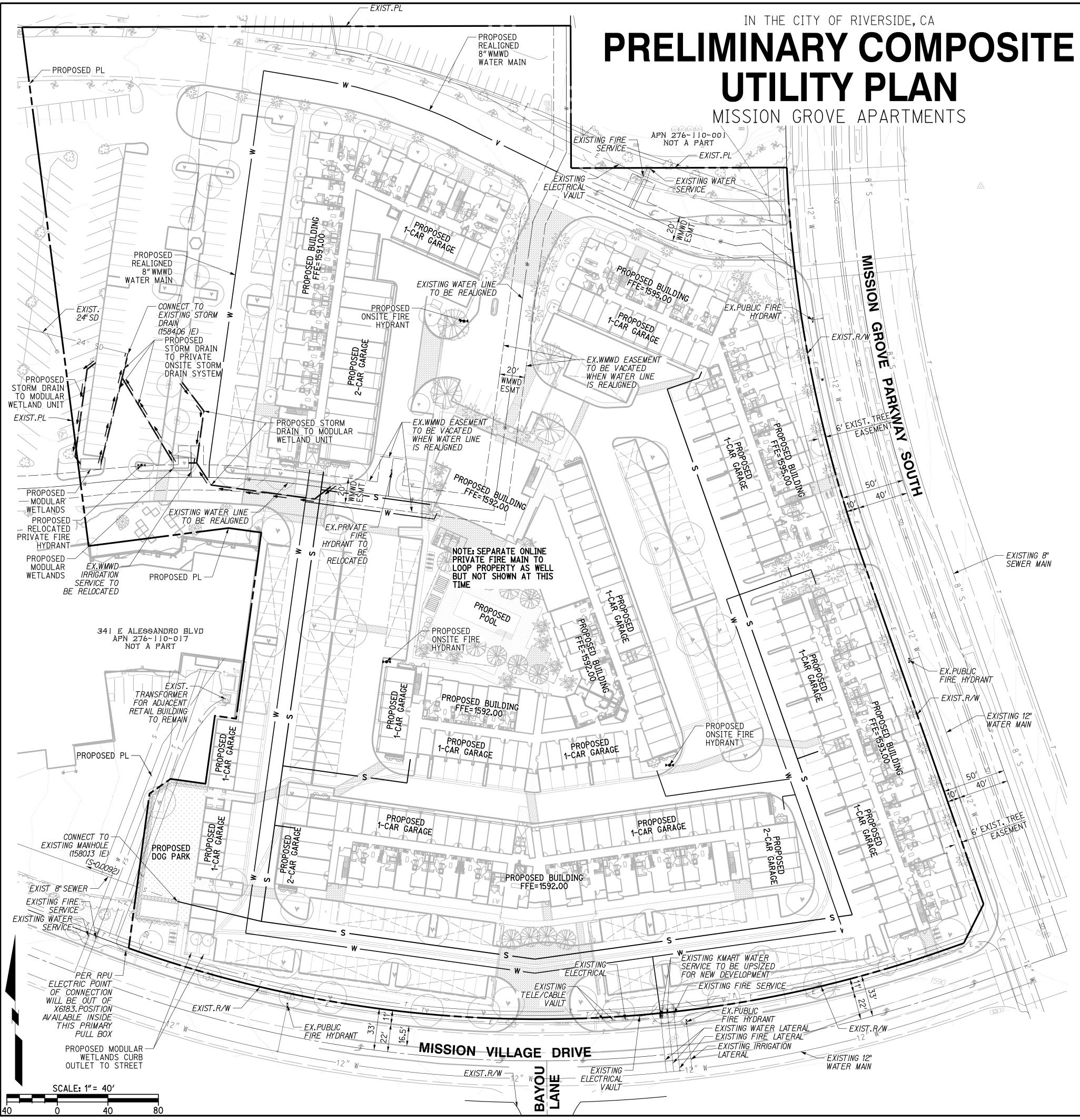
ASSESSOR'S PARCEL NUMBER 276-110-018

SITE ADDRESS

375 E ALESSANDRO BLVD RIVERSIDE CA, 92508


PRELIMINARY GRADING PLAN **MISSION GROVE APARTMENTS**

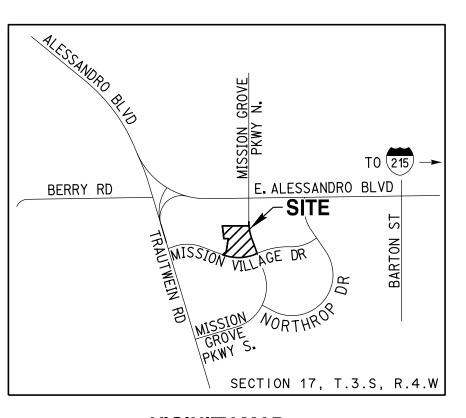
CITY OF RIVERSIDE IN THE COUNTY OF RIVERSIDE, CALIFORNIA DATE PREPARED: JUNE 7, 2022 DATE REVISED: AUGUST 5, 2022 SHEET 3 OF 5


PLOT DATE: 05-AUG-2022 JN 19550A

n Diego – Orange - San Luis Obispo - Bakersfield - Sacram

\\cp.rickeng.com\projects\C19500\19550_MissionGrove_Kmart\19550-A\Civil\Exhibits\19550Aent02_Prelim_Grading_Plan_Details.dgn

PLOT DATE: 05-AUG-2022 JN 19550A


\\cp.rickeng.com\projects\C19500\19550_MissionGrove_Kmart\19550-A\Civi\Exhibits\19550Aent03_Prelim_Comp_utLdgn

PROPOSED LEGEND

PROPOSED FIRE SER PROPOSED DOMESTI PROPOSED SEWER ..L PROPOSED FIRE HYD PROPOSED STORM [PROJECT BOUNDARY PROPOSED ELECTRIC

TOPOGRAPHY LEGEND

EXISTING	BOLLARD	
EXISTING	CATCH BASIN	CB
EXISTING	ELECTRICAL MANHOLE	(E)
EXISTING	FIRE HYDRANT	
EXISTING	LIGHT	X
EXISTING	PALM TREE	æ
EXISTING	SEWER MANHOLE	(s)
EXISTING	STORM DRAIN MANHOLE	(SD)
EXISTING	SIGN	(8)
EXISTING	WATER METER	WM
EXISTING	WALL	
EXISTING	TREE	×
EXISTING	WATER	
EXISTING	SEWER	S
EXISTING	STORM DRAIN	— <i>SD</i>
EXISTING	OVERHEAD POWER	-OHE-

VICINITY MAP N.T.S.

RVICE	
C SERVICE	—-w—
ATERAL	—s—
DRANT	►••
DRAIN	
(
CAL	—Е—

CIVIL ENGINEER

RICK ENGINEERING COMPANY 1770 IOWA AVENUE, SUITE 100 RIVERSIDE, CA 92507 PHONE: (951) 782-0707 ATTN: KRISTIN WERKSMAN, RCE 69317

ARCHITECT

AO ARCHITECTS 144 N ORANGE STREET ORANGE CA, 92866 (714) 639-9860

DEVELOPER

ANTON MISSION GROVE, LLC 1676 N CALIFORNIA BLVD, SUITE 250 WALNUT CREEK, CA 94596 PHONE: (650) 549-1613

OWNER

REGIONAL PROPERTIES 9201 WILSHIRE BLVD, SUITE 103 BEVERLY HILLS, CA 90210 ATTN: MICHELLE RUBIN PHONE: (310) 513-1776

PROJECT ACREAGE

9.97 AC - 434,223 SF

ASSESSOR'S PARCEL NUMBER

276-110-018

SITE ADDRESS

375 E ALESSANDRO BLVD RIVERSIDE CA, 92508

PRELIMINARY COMPOSITE UTILITY PLAN MISSION GROVE APARTMENTS

CITY OF RIVERSIDE IN THE COUNTY OF RIVERSIDE, CALIFORNIA DATE PREPARED: JUNE 7, 2022 DATE REVISED: AUGUST 5, 2022

SHEET 5 OF 5 1770 IOWA AVENUE - SUITE 100

Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data

Project No. T2979-22-01 May 24, 2022

Anton Mission Grove, LLC. 1676 N California Boulevard, Suite 250 Walnut Creek, California 94596

Attention: Ms. Vanessa Garza, Development Manager

Subject: DUE DILIGENCE GEOTECHNICAL INVESTIGATION AND PERCOLATION TESTING MISSION GROVE REDEVELOPMENT 375 EAST ALESSANDRO BOULVARD RIVERSIDE, CALIFORNIA

Dear Ms. Garza:

In accordance with your request, Geocon West, Inc. (Geocon) herein submits the results of our percolation testing at 375 East Alessandro Boulevard in Riverside, California.

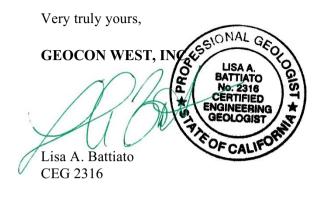
The geologic conditions at the site include 1 to 2 feet of previously placed artificial fill over quartz diorite bedrock. The quartz diorite is completely to highly weathered and excavates as silty sand. These deposits were encountered in each boring to the maximum depth explored of 26.25 feet.

Perched groundwater was encountered at depths of 11.5 and 16.5 feet near percolation tests P-1 and P-2, at 15 feet near P-3 and P-4, and was not encountered to a depth of 15 feet near P-5 and P-6.

Percolation testing was performed in accordance with *Riverside County Flood Control and Water Conservation District, LID BMP Manual, Appendix A* (Handbook). The test locations are shown on Figure 1, *Boring Location Map,* that uses *Infiltration Testing Locations* prepared by Rick Engineering as a base. Logs of the geotechnical and percolation test borings and percolation data sheets are presented on Figures A-1 through A-19.

The 8-inch-diameter percolation test borings were drilled to 2 to 4.5 feet below the existing ground surface as indicated by the project civil engineer. Approximately two inches of gravel was placed at the bottom of each test boring and a perforated pipe was placed atop the gravel to prevent caving. Gravel was placed around the bottom of the test hole to support the test pipe. The test locations were pre-saturated prior to testing. Results of the converted percolation test rates to infiltration test rates are presented in the table below. Note that the Handbook requires a factor of safety of 3 be applied to the values below based on the test method used.

Parameter	P-1	P-2	P-3	P-4	P-5	P-6
Test Type	Sandy	Sandy	Sandy	Sandy	Sandy	Sandy
Change in head over time: ∆H (inches)	28.9	28.8	14.6	12.6	25.1	13.4
Average head: Havg (inches)	21.5	21.6	28.7	29.7	23.5	29.3
Time Interval ∆t (minutes)	10	10	10	10	10	10
Test Hole Radius: r (in)	4	4	4	4	4	4
Infiltration Rate: It (inches/hour)	14.7	14.6	5.7	4.8	11.8	5.2


INFILTRATION TEST RESULTS

The results of the percolation testing, per the Handbook, indicate that infiltration is between 4.8 and 14.7 inches per hour at the locations tested.

The in-situ field percolation tests performed provide short-term infiltration rates, which apply mainly to the initiation of the infiltration process due to the short time of the test (hours instead of days) and the amount of water used. Where appropriate the short-term infiltration rates shall be converted to long-term infiltration rates using reduction factors depending upon the degree of infiltrate quality, maintenance access and frequency, site variability, subsurface stratigraphy variation, and other factors. The small-scale percolation testing cannot model the complexity of the effect of interbedded layers of different soil composition, and our test results should be considered only as index values of infiltration rates.

The grading contractor should take care not to compact the soil in the basin bottom during construction which will reduce the infiltration rate of the basin. If compaction of the basin bottom does occur, the basin bottom should be deep ripped with equipment as it moves out of the basin to loosen the soil and avoid recompacting it.

An on-going maintenance program for the infiltration systems should be implemented to remove silt build-up within the system, as the migration of silt particles into the system over time can reduce the effectiveness of the system. Should you have any questions regarding this report, or if we may be of further service, please contact the undersigned at your convenience.

LAB:hd

Attachments: Figure 1, Boring Location Map Figures A-1 through A-7, Logs of Geotechnical Borings Figures A-8 through A-13, Logs of Percolation Borings Figures A-14 through A-19, Percolation Test Report Data

..... PERCOLATION TEST LOCATION

. LIMITS OF THIS STUDY

	BOR	BORING LOCATION MAP											
TERIALS NIA 92562	375 EAS	n Gove Redevelopment T Alessandro Boulevar Iverside, California	D										
	MAY 2022	PROJECT NO. T2979-22-01	FIG. 1										

DEPTH IN FEET SAMPLE NO. Depter Sile Soll CLASS (USCS) SOL CLASS (USCS) BORING B-1 0 B-1@0-5' B-1@0-5' ELEV. (MSL.)1584 DATE COMPLETED 5/13/2022 BY: L. WEIDMAN 0 B-1@0-5' PAVEMENT SECTION 3'' AC, 4'' BASE UNDOCUMENTED FILL (afu) Poorly-graded SAND, medium dense, slightly moist, golden brown; medium sand; some coarse sand QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; dry; friable; slightly oxidized; coarse grained 6 B-1@2.0' B-1@7.5' B-1@7.5' B-1@7.5' B-1@7.5'	BENETRATION	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0 B-1@0-5' B-1@2.5' PAVEMENT SECTION 2 B-1@2.5' SP 3" AC, 4" BASE 4 B-1@2.5' Image: Section of the sec	 		Soz
0 B-1@0-5' SP PAVEMENT SECTION 2 SP 3" AC, 4" BASE 4 B-1@2.5' Image: Sight provided start provided sta	- 50-3" - _ 50-3"		
PAVEMENT SECTION 2 B-1@0-5' SP 3" AC, 4" BASE 4 B-1@2.5' Interview Interview 4 B-1@20' Interview Interview 6 B-1@20' Interview Interview 8 B-1@7.5' Interview Interview	- 50-3" - _ 50-3"		
 2 - B-1@2.5' 4 - B-1@20' 6 - B-1@7.5' 9 - H - H - H - H - H - H - H - H - H -	- 50-3" - _ 50-3"		
4 $-$ B-1@20' B $-$ B-1@7.5' B $-$ B-1C/2B $-$ B-	_ _ 50-3" _		
$ \begin{array}{c} 6 \\ \mathbf{-} \\ \mathbf$	_ _ 50-3" _		
8 $-B-1@7.5'$ $B-1@7.5'$ $-Becomes fine grained; hornblend rich$	_		
		1	1
$10 = B^{-1}(@10') = B^{-1}(@1') = B^{-1}(@1') = B$	50-4"		
	_		
	-		
$16 - \begin{bmatrix} B-1@15' \\ B-1&10' \\ B-1&10'$	 		
	_		
20 - B-1@20' = B-1@20' = Becomes wet-Becomes wet	50-2"		
	_		
24 - $B-1@25'$ $B-1@25'$	- - 50-3"		
26 - Total Depth = $26'3''$			
Groundwater encountered at 16'6" Penetration resistance for 140-lb hammer falling 30 inches by auto hammer Backfilled with cuttings 5/13/2022			
igure A-1, og of Boring B-1, Page 1 of 1	T2979-2	22-01 BORING	G LOGS.
	AMPLE (UNDI	ISTURBED)	

PROJEC	I NO. T2979	-22-01						
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B-2 ELEV. (MSL.)1583 DATE COMPLETED 5/13/2022 EQUIPMENTCME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	× F				MATERIAL DESCRIPTION			
- 0 -	BUL				PAVEMENT SECTION			
L -		6008			4" AC, 6" BASE			
- 2 -	B-2@2.5'				QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; slightly moist; friable; coarse grained; slightly oxidized	- _ 50-3"		
- 4 -						-		
 - 6 -	B-2@20' B-2@5-10\X				-Becomes moist; fine to coarse grained	50-2"		
	- 1					_		
- 8 -	B-2@7.5'				-Becomes wet	_ 50-5"		
	I M							
- 10 - 	B-2@10'		Ţ			50-4" 		
- 12 -			-			-		
	B-2@12.5	4				_50-3.5"		
- 14 -						-		
 - 16 -	B-2@15'					50-5"'		
						-		
- 18 -	B-2@17.5'					_50-4.5"		
	B-2@20'					_ 50-1"		
- 20 -	<u> </u>				-NO RECOVERY Total Depth = 20'1" Groundwater encountered at 11'6" Penetration resistance for 140-lb hammer falling 30 inches by auto hammer Backfilled with cuttings 5/13/2022			
Figure	e A-2.					T2979-2	2-01 BORIN(G LOGS.GPJ
	f Boring	B-2 .	Pa	qe 1 c	of 1			
3 •	· · · · 9	,						
SAMF	PLE SYMBO	LS	C Ø	-		SAMPLE (UNDI		

	NO. T297			Я		BORING B-3	Zщ.	Ł	(%
DEPTH IN FEET	SAMPLE NO.		гі і ногод	GROUNDWATER	SOIL CLASS (USCS)	ELEV. (MSL.)1588 DATE COMPLETED 5/13/2022	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			5	GROL	(0303)	EQUIPMENT CME 75 HSA BY: L. WEIDMAN	PEN RES (BL	DR)	N N N N N N N N N N N N N N N N N N N
	ULK	R/SPT				MATERIAL DESCRIPTION			
0 +	m	- 282	Q 4			PAVEMENT SECTION			
2 -						3.5" AC, 4" BASE QUARTZ DIORITEBEDROCK (qdi)	-		
E	3-3@2.5'					White black brown; mica rich; excavates as Well-graded SAND with Silt; moist; friable; slightly oxidized; micaceous	_ 50-3"		
4 –							_		
Е 6 — В-	3-3@20' X -3@5-10					-Becomes moist; fine to coarse grained	_ 50-3" _		
_	X						-		
8 – ^E	3-3@7.5'					-Becomes wet	_ 50-3"		
10 -	3-3@10'						50-2"		
-	5-5@10			Ţ					
12 -							_		
14 –							_		
E	3-3@15'					-NO RECOVERY	_ 50-2"		
						Total Depth = 15'2" Groundwater encountered at 11' Penetration resistance for 140-1b hammer falling 30 inches by auto hammer Backfilled with cuttings 5/13/2022			
igure og of	A-3, Boring	јВ-	3, I	Pa	ge 1 o	of 1	T2979-2	2-01 BORING	G LOGS.G
SAMPI	E SYMB	21.5] SAMPLI	NG UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE S	SAMPLE (UNDIS	STURBED)	
		20		\otimes	DISTUR	BED OR BAG SAMPLE I WATER	TABLE OR SE	EPAGE	

PROJEC	I NO. T297	9-22-01						
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B-4 ELEV. (MSL.)1584 DATE COMPLETED 5/13/2022 EQUIPMENTCME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	Ļ	L.	+					
- 0 -		DR/S						
	B-4@0-5'	ka pi	/	G) (PAVEMENT SECTION 6" AC, 4" BASE /	_		
- 2 -	.B-4@2.5'			SM	UNDOCUMENTED FILL (afu) Silty SAND, medium dense, slightly moist, brown; medium to coarse sand; some mica	- _ 50-3"		
- 4 -	B-4@20'	-			QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; medium to coarse sand; slightly oxidized; micaceous; friable	- - 50-2"		
- 6 -	D-1@20					- -		
- 8 -	.B-4@7.5'				-Becomes hornblend rich	_ 50-5" _		
- 10 -	B-4@10'				-Becomes wet	50-5" 		
- 12 -						-		
			¥			-		
- 14 -	.		-			-		
	B-4@15'					_ 50-4"		
					-NO RECOVERY Total Depth = 15'4" Groundwater encountered at 13'6" Penetration resistance for 140-lb hammer falling 30 inches by auto hammer Backfilled with cuttings 5/13/2022			
Figure Log o	∋ A-4, f Boring	ј В-4,	Pa	ige 1 c	of 1	T2979-2	2-01 BORING	LOGS.GPJ
SAME	LE SYMB	าเร	Ľ	SAMPL	NG UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE S	AMPLE (UNDI	STURBED)	
		220	Ø		IBED OR BAG SAMPLE I CHUNK SAMPLE I WATER	TABLE OR SE	EPAGE	

DEPTH IN SAMPLE C FEET NO. T	GROUNDWATER	SOIL CLASS (USCS)	BORING B-5 ELEV. (MSL.)1585 DATE COMPLETED 5/13/2022 EQUIPMENTCME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
× Fas			MATERIAL DESCRIPTION			
			PAVEMENT SECTION			
B-5@0-5'		SM	\downarrow 4" AC, 4" BASE	_		
- 2 - B-5@2.5'			UNDOCUMENTED FILL (afu) Silty SAND, medium dense, slightly moist, golden brown; fine to coarse sand; little mica	_ _ 50-5"		
- 4 - B-5@20'			QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; coarse grained; slightly oxidized; micaceous; friable	- - 50-4"		
- 6 - - 8 -B-5@7.5'			-Becomes fine grained; felsic	_ _ 50-4"		
 - 10 - _{B-5@10'}			-Becomes wet	- - 50-3"		
				-		
- 14 - B-5@15'	Ţ		NO RECOVERY	_ _ 50-4"		
			-NO RECOVERY Total Depth = 15'4" Groundwater encountered at 15' Penetration resistance for 140-lb hammer falling 30 inches by auto hammer Backfilled with cuttings 5/13/2022			
Figure A-5, Log of Boring B-	5, Pa	nge 1 o	f 1	T2979-2	2-01 BORING	LOGS.GPJ
SAMPLE SYMBOLS	[NG UNSUCCESSFUL □ STANDARD PENETRATION TEST □ DRIVE S BED OR BAG SAMPLE □ CHUNK SAMPLE ▼ WATER	AMPLE (UNDIS TABLE OR SEI		

FROJEC	T NO. T297	9-22-0	I					
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B-6 ELEV. (MSL.)1584 DATE COMPLETED 5/13/2022 EQUIPMENTCME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	×	Las			MATERIAL DESCRIPTION			
- 0 -	BUL	DRV			PAVEMENT SECTION			
			^	SM	5° AC, 4" BASE	_		
- 2 -	B-6@2.5'			5141	UNDOCUMENTED FILL (afu) Silty SAND, medium dense, moist, dark yellow brown; fine to coarse sand; little mica	_ _ 50-6"		
- 4 -	B-6@20' X B-6@5-10\				QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; slightly oxidized; micaceous; friable -Becomes moist	_ 50-5" 		
	B-6@7.5'				-Becomes fine grained	_ _ 50-4"		
 - 10 -	B-6@10'				-Becomes wet	_ 50-4" 		
- 12 -						_		
- 14 -	B-6@15'		Ţ			_ _50-4.5"		
					Total Depth = 15'4" Groundwater encountered at 15' Penetration resistance for 140-lb hammer falling 30 inches by auto hammer Backfilled with cuttings 5/13/2022			
F :					1			
Figure	e A-6, f Boring	g B-6.	Pa	nge 1 c	of 1	T2979-2	2-01 BORING	LOGS.GPJ
				SAMPL		AMPLE (UNDI		

DEPTH IN SAMPLE JOINT FEET NO.	SOIL CLASS (USCS)	BORING B-7 ELEV. (MSL.)1585 DATE COMPLETED 5/13/2022 EQUIPMENT CME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
SPT K		MATERIAL DESCRIPTION			
- 0 -		PAVEMENT SECTION			
	CM	4" AC, 8" BASE	_		
$\begin{array}{ccc} - & 2 & - \\ & & & \\ B-7@2-7' \\ - & & - \\ B-7@2.5' \\ \end{array} \begin{array}{c} & & & \\ & & \\ \end{array} \begin{array}{c} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \end{array}$	SM	UNDOCUMENTED FILL (afu) Silty SAND, medium dense, moist, dark red brown; fine to coarse sand; little mica	_ _ 61-8"		
4 – B-7@20'		QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; slightly oxidized; micaceous; friable -Becomes fine grained	- - 50-3"		1
- 6 - - 8 -B-7@7.5'		-Poor recovery	_ _ 50-2"		1
- – - 10 – _{B-7@10'}			- - 50-2"		1
- 12 -			_		1
14 – 			_ _ 50-2"		l
		-Poor recovery Total Depth = 15'2" Groundwater not encountered Penetration resistance for 140-lb hammer falling 30 inches by auto hammer Backfilled with cuttings 5/16/2022			
			T2070 2		
Figure A-7, Log of Boring B-7, I	Page 1 o	f 1	12979-2	2-01 BORING	- LUGO.GF
SAMPLE SYMBOLS	SAMPLI		AMPLE (UNDIS		

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING P-1 ELEV. (MSL.)1582 DATE COMPLETED 5/13/2022 EQUIPMENTCME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	ULK R/SPT				MATERIAL DESCRIPTION			
- 0 -					PAVEMENT SECTION			
				SP	3" AC, 4" BASE	_		
- 2 -		<u> </u>			UNDOCUMENTED FILL (afu) Poorly-graded SAND, medium dense, slightly moist, golden brown;			
	P-1@3'	-			medium sand; some coarse sand; few mica	-		
- 4 -					QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; dry; friable; slightly oxidized	-		
					Total Depth = 4.5'			
					No Groundwater encountered Percolation Test Equipment set			
					Presaturated with 5 gallons of water			
					Backfilled with cuttings 5/16/2022			
Figure Log o	e A-8, f Boring	P-1,	Pa	ige 1 o	f 1	T2979-2	2-01 BORING	LOGS.GPJ
			Г			AMPLE (UNDI	STURBED)	
SAMF	LE SYMBO	LS	Ø	-	BED OR BAG SAMPLE III CHUNK SAMPLE III WATER			

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING P-2 ELEV. (MSL.)1582 DATE COMPLETED 5/13/2022 EQUIPMENTCME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	BULK				MATERIAL DESCRIPTION			
- 0 -		<u>ka-04</u>		SP	PAVEMENT SECTION			
- 2 - - 2 -	P-2@2'				3" AC, 4" BASE UNDOCUMENTED FILL (afu) Poorly-graded SAND, medium dense, slightly moist, golden brown; medium sand; some coarse sand; few mica	-		
Figure	€ A-9 ,				QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; dry; friable; slightly oxidized Total Depth = 3.5' No Groundwater encountered Percolation Test Equipment set Presaturated with 5 gallons of water Backfilled with cuttings 5/16/2022	T2979-2	2-01 BORING	LOGS.GPJ
Log o	f Boring	P-2,	Pa	ge 1 o				
SAMF	PLE SYMBO	LS	[-	NG UNSUCCESSFUL Image: mail and mail	AMPLE (UNDI TABLE OR SE		

1								
			К		BORING P-3	Z	~	
DEPTH		Ğ	ATE	SOIL		TIO FT.)	SIT.	RЕ (%
IN	SAMPLE	OLC	DW	CLASS	ELEV. (MSL.)1585 DATE COMPLETED 5/13/2022	TRA STA WS/	OEN .C.F	STU TEN ⁻
FEET	NO.	ГІТНОГОСУ	GROUNDWATER	(USCS)	DATE CONTECTED 3/13/2022	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GR		EQUIPMENT CME 75 HSA BY: L. WEIDMAN	ы Н н – – – – – – – – – – – – – – – – – –	Δ	0
	LK (SPT				MATERIAL DESCRIPTION			
- 0 -	BU	6676			PAVEMENT SECTION			
		purpu			4" AC, 5" BASE	_		
- 2 -					QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with	-		
					Silt; dry; friable; slightly oxidized; micaceous	_		
- 4 -						_		
	P-3@4.5'	-						
0								
- 6 -					Total Depth = $6'$			
					No Groundwater encountered Percolation Test Equipment set			
					Presaturated with 5 gallons of water			
					Backfilled with cuttings 5/16/2022			
Figure	e A-10,					T2979-2	2-01 BORING	LOGS.GPJ
Log o	f Boring	P-3,	Pa	ge 1 o	f 1			
				SAMPLI	NG UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE S.	AMPLE (UNDI	STURBED)	
SAMF	PLE SYMBC	LS	Ø		BED OR BAG SAMPLE I CHUNK SAMPLE I WATER			

			-						
			Ģ	۲		BORING P-4	Z III O	~	
DEPTH				Ă	SOIL		FT.	ISIT (:	T (%
IN	SAMPLE NO.				CLASS	ELEV. (MSL.) 1585 DATE COMPLETED 5/13/2022	ETRA ISTA IVS	DEN C.F	ISTU
FEET				GROUNDWALER	(USCS)		PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
				5		EQUIPMENTCME 75 HSA BY: L. WEIDMAN	<u>ш</u> –		U
	зицк	DR/SPT				MATERIAL DESCRIPTION			
- 0 -		600	26			PAVEMENT SECTION			
	1					4" AC, 5" BASE QUARTZ DIORITE BEDROCK (qdi)	-		I
- 2 -	1					White black brown; mica rich; excavates as Well-graded SAND with	_		1
	-					Silt; dry; friable; slightly oxidized; micaceous	-		1
- 4 -	P-4@4.5'						-		1
							-		1
- 6 -				-		Total Depth = $6'$			
						No Groundwater encountered			1
						Percolation Test Equipment set Presaturated with 5 gallons of water			I
						Backfilled with cuttings 5/16/2022			1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
L									
	e A-11, of Boring	а Р	1 P	ar	1e 1 o	f 1	12979-2	2-01 BORING	LOGS.GPJ
		ינ	·, ·	<u>-</u>	_				
SAMF	PLE SYMB	OLS				NG UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE S			
				\otimes	DISTUR	BED OR BAG SAMPLE 🛛 WATER :	TABLE OR SE	EPAGE	

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING P-5 ELEV. (MSL.) <u>1588</u> DATE COMPLETED <u>5/13/2022</u> EQUIPMENT CME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
- 0 -	BULK DR/SPT				MATERIAL DESCRIPTION			
0		<u>koopi</u>		CM	PAVEMENT SECTION 3" AC, 5" BASE			
				SM	UNDOCUMENTED FILL (afu)	_		
- 2 - 					Silty SAND, medium dense, moist, dark red brown; fine to coarse sand; few mica	_		
- 4 -	P-5@4.5'	-			QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; dry; friable; slightly oxidized	_		
Figure	e A-12,				Total Depth = 6 No Groundwater encountered Percolation Test Equipment set Presaturated with 5 gallons of water Backfilled with cuttings 5/16/2022	T2979-2	2-01 BORING	LOGS.GPJ
Log o	f Boring	P-5,	Pa	ige 1 o	f 1			
				SAMPLI	NG UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE S/	AMPLE (UNDI	STURBED)	
SAMF	PLE SYMBO	IS	Ø		BED OR BAG SAMPLE The WATER T			

DEPTH IN FEET	SAMPLE NO.	ГІТНОГОЄУ	GROUNDWATER	SOIL CLASS (USCS)	BORING P-6 ELEV. (MSL.) <u>1588</u> DATE COMPLETED <u>5/13/2022</u> EQUIPMENT CME 75 HSA BY: L. WEIDMAN	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
	BULK				MATERIAL DESCRIPTION			
- 0 -		2000-0			PAVEMENT SECTION			
	1			SM	3" AC, 5" BASE UNDOCUMENTED FILL (afu)	_		
- 2 - 					Silty SAND, medium dense, moist, dark red brown; fine to coarse sand; few mica	_		
- 4 -	P-6@4.5'	-			QUARTZ DIORITE BEDROCK (qdi) White black brown; mica rich; excavates as Well-graded SAND with Silt; dry; friable; slightly oxidized	_		
Figure	e A-13,				Total Depth = 6 No Groundwater encountered Percolation Test Equipment set Presaturated with 5 gallons of water Backfilled with cuttings 5/16/2022	T2979-2	22-01 BORING	B LOGS.GPJ
Log o	f Boring	P-6 ,	Pa	ge 1 o	f 1	12919-2		, 2000.GPJ
	5	,			NG UNSUCCESSFUL STANDARD PENETRATION TEST DRIVE SA			
SAMF	PLE SYMBC	ls	Ľ		BED OR BAG SAMPLE CHUNK SAMPLE WATER T			

			PERCOLA	TION TEST RE	PORT		
Project Na	me:	Riverside F	Redevelopme	nt	Project No.:		T2979-22-01
Test Hole		P-1			Date Excavate	ed:	5/13/2022
Length of	Test Pipe:		36.0	inches	Soil Classifica	ation:	SM
	Pipe above	Ground:	0.0	inches	Presoak Date	:	5/13/2022
Depth of T			36.0	inches	Perc Test Dat	e:	5/16/2022
		Criteria Te		Weidman	Percolation T		Weidman
	,			ured from BO			
			Sandv	Soil Criteria T	est		
Trial No.	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
		Interval	Elapsed	Level	Level	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
	8:52 AM	. ,		. ,	. ,	. ,	. ,
1	9:17 AM	25	25	12.0	0.0	12.0	2.1
	9:17 AM						
2	9:17 AM 9:42 AM	25	50	12.0	4.8	7.2	3.5
			Soil Crite	ria: Sandy			
			Percola	tion Test			
Reading	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
No.		Interval	Elapsed	Head	Head	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
1	12:16 AM	10	10	36.0	3.8	32.2	0.3
	12:26 AM						
2	12:26 AM 12:36 AM		20	36.0	4.9	31.1	0.3
3	12:36 AM 12:46 AM	10	30	36.0	5.4	30.6	0.3
4	12:46 AM	10	40	36.0	5.8	30.2	0.3
5	12:56 AM 12:56 AM	10	50	36.0	6.5	29.5	0.3
	1:06 AM 1:06 AM						
6	1:16 AM	10	60	36.0	7.1	28.9	0.3
Infiltration	Rate (in/hi	r):	14.7				
	test hole (i		4				Figure A-14
Average H		/- 	21.5				

			PERCOLA	TION TEST RE	PORT		
Project Na			Redevelopme	nt	Project No.:		T2979-22-01
Test Hole		P-2			Date Excavate		5/13/2022
Length of	Test Pipe:		24.0	inches	Soil Classifica	ation:	SM
Height of F	Pipe above	Ground:	0.0	inches	Presoak Date		5/13/2022
Depth of T	est Hole:		24.0	inches	Perc Test Dat	e:	5/16/2022
Check for	Sandy Soil	Criteria Te	ested by:	Weidman	Percolation T	ested by:	Weidman
	-	Wate	er level meas	ured from BO			
		1		Soil Criteria T			
Trial No.	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
		Interval	Elapsed	Level	Level	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
1	8:51 AM 9:16 AM	25	25	8.4	0.8	7.6	3.3
2	9:16 AM 9:41 AM	25	50	8.4	3.6	4.8	5.2
			Soil Crite	ria: Sandy			
			Percola	tion Test			
Reading	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
No.		Interval	Elapsed	Head	Head	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
1	12:15 AM 12:25 AM	10	10	36.0	6.4	29.6	0.3
2	12:25 AM 12:35 AM	10	20	36.0	6.7	29.3	0.3
3	12:35 AM 12:45 AM	10	30	36.0	6.8	29.2	0.3
4	12:45 AM 12:55 AM		40	36.0	7.0	29.0	0.3
5	12:55 AM 1:05 AM	10	50	36.0	7.1	28.9	0.3
6	1:05 AM 1:05 AM 1:15 AM	10	60	36.0	7.2	28.8	0.3
		-					
		-					
Infiltration	Data /im/h-		14.0				
	Rate (in/hi test hole (i		14.6				Figure A-15
		n <i>j</i> :					Figure A-15
Average H	eau (in):		21.6				

		Γ	PERCOLA	TION TEST RE	PORT	1	I
Project Na			Redevelopme	nt	Project No.:		T2979-22-01
Test Hole I		P-3			Date Excavate		5/13/2022
Length of				inches	Soil Classifica		SM
Height of F	Pipe above	Ground:	0.0	inches	Presoak Date	:	5/13/2022
Depth of T				inches	Perc Test Dat	e:	5/16/2022
Check for	Sandy Soil	Criteria Te	ested by:	Weidman	Percolation T	ested by:	Weidman
		Wate	er level meas	ured from BO	TTOM of hole		
			Sandy	Soil Criteria T	est		
Trial No.	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
		Interval	Elapsed	Level	Level	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
	8:49 AM	. ,		. ,	. ,	. ,	
1	9:14 AM	25	25	24.0	13.0	11.0	2.3
2	9:14 AM 9:39 AM	25	50	24.0	16.3	7.7	3.3
			Soil Crite	ria: Sandy			
			Percola	tion Test			
Reading	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
No.		Interval	Elapsed	Head	Head	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
1	11:01 AM 11:11 AM	10	10	36.0	20.6	15.4	0.7
2	11:11 AM	10	20	36.0	21.2	14.8	0.7
	11:21 AM						
3	11:21 AM 11:31 AM	10	30	36.0	21.6	14.4	0.7
4	11:31 AM 11:41 AM	10	40	36.0	21.6	14.4	0.7
5	11:41 AM 11:51 AM	10	50	36.0	21.5	14.5	0.7
6	11:51 AM	10	60	36.0	21.4	14.6	0.7
	12:01 PM						
L. C. 14	Dete (1)	-) -					
Infiltration Radius of			5.7				Figure A-16
Average H		··/·	28.7				i igule A-10

		Γ	PERCOLA	TION TEST RE	PORT	1	ſ
Project Na			Redevelopme	nt	Project No.:		T2979-22-01
Test Hole		P-4			Date Excavate		5/13/2022
Length of				inches	Soil Classifica		SM
	Pipe above	Ground:		inches	Presoak Date		5/13/2022
Depth of T				inches	Perc Test Dat	e:	5/16/2022
Check for	Sandy Soil	Criteria Te	ested by:	Weidman	Percolation T	ested by:	Weidman
		Wate	er level meas	ured from BO	TTOM of hole		
			Sandy	Soil Criteria T	est		
Trial No.	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
		Interval	Elapsed	Level	Level	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
	8:48 AM	. ,		. ,	. ,	. ,	
1	9:13 AM	25	25	24.0	15.2	8.8	2.9
	9:13 AM						
2	9:38 AM	25	50	24.0	17.9	6.1	4.1
			Soil Crite	ria: Sandy			
			Percola	tion Test			
Reading	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
No.		Interval	Elapsed	Head	Head	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
1	11:00 AM 11:10 AM	10	10	36.0	21.8	14.2	0.7
2	11:10 AM 11:20 AM	10	20	36.0	22.1	13.9	0.7
3	11:20 AM	10	30	36.0	22.3	13.7	0.7
	11:30 AM	_					-
4	11:30 AM 11:40 AM	10	40	36.0	22.7	13.3	0.8
5	11:40 AM 11:50 AM	10	50	36.0	23.0	13.0	0.8
6	11:50 AM 12:00 PM	10	60	36.0	23.4	12.6	0.8
	12.00 1 11						
		-					
Infiltration	Rate (in/h	r):	4.8				
Radius of	test hole (i		4				Figure A-17
Average H	ead (in):		29.7				

		[PERCOLA	TION TEST RE	PORT	Γ	I
		_					
Project Na			Redevelopme	nt	Project No.:	_	T2979-22-01
Test Hole		P-5			Date Excavate		5/13/2022
Length of				inches	Soil Classifica		SM
	Pipe above	Ground:		inches	Presoak Date		5/13/2022
Depth of T				inches	Perc Test Dat	e:	5/16/2022
Check for	Sandy Soil	Criteria Te	ested by:	Weidman	Percolation T	ested by:	Weidman
		Wate	er level meas	ured from BO	TTOM of hole		
			Sandy	Soil Criteria T	est		
Trial No.	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
		Interval	Elapsed	Level	Level	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
	8:46 AM	. ,		. ,	. ,	. ,	
1	9:11 AM	25	25	24.0	15.0	9.0	2.8
	9:11 AM						
2	9:36 AM	25	50	24.0	18.0	6.0	4.2
			Soil Crite	ria: Sandy			
			Percola	tion Test			
Reading	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
No.		Interval	Elapsed	Head	Head	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
1	9:46 AM	10	10	36.0	10.2	25.8	0.4
	9:56 AM	_	-		-		_
2	9:56 AM	10	20	36.0	10.6	25.4	0.4
_	10:06 AM						••••
3	10:06 AM	10	30	36.0	10.8	25.2	0.4
•	10:16 AM						••••
4	10:16 AM		40	36.0	10.9	25.1	0.4
т	10:26 AM	10	τu	00.0	10.0	20.1	U. T
5	10:26 AM	10	50	36.0	10.9	25.1	0.4
5	10:36 AM	10		00.0	10.0	20.1	0.7
6	10:36 AM	10	60	36.0	10.9	25.1	0.4
0	10:46 AM	10	00	30.0	10.5	20.1	0.4
		•					
		-					
		•					
Infiltration	Rate (in/h	r).	11.8				
	test hole (i		4				Figure A-18
Average H		, 	23.5				

			PERCOLA	TION TEST RE	PORT		
Project Na			Redevelopme	<u>nt</u>	Project No.:		T2979-22-01
Test Hole	-	P-6			Date Excavate		5/13/2022
	Test Pipe:			inches	Soil Classifica		SM
	Pipe above	Ground:		inches	Presoak Date		5/13/2022
Depth of T				inches	Perc Test Dat		5/16/2022
Check for	Sandy Soil	Criteria Te		Weidman	Percolation T	ested by:	Weidman
	[Wate	er level meas	ured from BO	TTOM of hole	1	1
			Sandy	Soil Criteria T			
Trial No.	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
marino.	Time	Interval	Elapsed	Level	Level	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
	8:45 AM	. ,		. ,	. ,	. ,	
1	9:10 AM	25	25	24.0	16.4	7.6	3.3
	9:10 AM						
2	9:35 AM	25	50	24.0	18.0	6.0	4.2
			Soil Crite	ria: Sandy			
			Percola	tion Test			
Reading	Time	Time	Total	Initial Water	Final Water	∆ in Water	Percolation
No.		Interval	Elapsed	Head	Head	Level	Rate
		(min)	Time (min)	(in)	(in)	(in)	(min/inch)
1	9:45 AM 9:55 AM	10	10	36.0	21.6	14.4	0.7
2	9:55 AM 10:05 AM	10	20	36.0	21.7	14.3	0.7
3	10:05 AM 10:15 AM	10	30	36.0	22.0	14.0	0.7
4	10:15 AM 10:25 AM	10	40	36.0	22.2	13.8	0.7
5	10:25 AM 10:35 AM	10	50	36.0	22.4	13.6	0.7
6	10:35 AM 10:45 AM	10	60	36.0	22.6	13.4	0.7
		-					
	Rate (in/hi		5.2				
	test hole (i	n):	4				Figure A-19
Average H	ead (in):		29.3				

Appendix 4: Historical Site Conditions

Phase I Environmental Site Assessment or Other Information on Past Site Use

Appendix 5: LID Infeasibility

LID Technical Infeasibility Analysis

Appendix 6: BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation

Company	y Name l by	Rick Enginee Sam Schucha Number/Name MWL-1	2	BMP	19550-A / Identificat	⁷ Mission Grov ion		Date Case No	6/7/2022
Designed Company	l by y Project 1 ME / ID	Sam Schucha Number/Name MWL-1	ardt	BMP	Identificat	ion	ve Apartme	Case No	
Company	y Project 1	MWL-1		BMP	Identificat	ion	e Apartme	ents	
			Mu	ist match Nai					
			Ми	ist match Nai					
Design R	ainfall In	tensity	Ми		me/ID used				
Design R	ainfall In	tensity		Design		on BMP Design	Calculatior	n Sheet	
Design R	ainfall In	tensity		8	Rainfall D	epth			
							I =	0.20	in/hr
_			Drai	nage Manag	gement Ar	ea Tabulation			
		Ins	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ne BMP	
			Post-Project	Effective	DMA		Rainfall		
	DMA	DMA Area	Surface Type	Imperivous	Runoff	DMA Areas x	Intensity	Design Flow	Proposed Flow
_	Type/ID	(square feet)	(use pull-down menu) Mixed Surface	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	D-1	57907	Types	1	0.89	51653			
-									
-									
-									
_									
-									
<u>م</u>									
DMAs									
-									
-									
-									
-									
-									
		57907		Total		51653	0.20	0.2	0.462
		57507	l			31000	0.20	0.2	0.702

Designe	y Name (Note this worksh							
Designe	IV INALLIC		eet shall <u>only</u> be used ering Company	d in conjunctio	on with BMF	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 6/7/2022
		Sam Schucha						Case No	
-		Number/Name			19550-A	Mission Grov	e Apartme		
	• •						*		
				BMP	Identificat	ion			
BMP NA	AME / ID	MWL-2							
			Ми	st match Na	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	epth			
Design l	Rainfall In	itensity					I =	0.20	in/hr
			Drai	nage Manag	gement Ar	ea Tabulation			
		Ins	sert additional rows	if needed to	ассоттоа	late all DMAs di		e BMP	
			Post-Project	Effective	DMA		Design Rainfall		
	DMA	DMA Area	Surface Type	Imperivous	Runoff	DMA Areas x	Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	(use pull-down menu)	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	D-2	78919	Mixed Surface Types	1	0.89	70395.7			
s									
DMAs									
		78919		Total		70395.7	0.20	0.3	0.346

	Santa A	Ana Water	<u>shed</u> - BMP I	Design Flo	w Rate. (Deme	T		Required Entri
			(Rev. 10-2011)	-			Legend:		Calculated Cel
ompa	ny Name (4		<i>eet shall <u>only</u> be use</i> ering Company	d in conjunctio	on with BMP	designs from the	e <u>LID BMP .</u>		<u>ok</u>) e 6/7/2022
esigne		Sam Schucha						Case No	
ompa	ny Project I	Number/Name	e		19550-A /	Mission Grov	e Apartme	ents	
				BMP	Identificat	ion			
MP N	AME / ID	MWL-3							
			Μι			on BMP Design	Calculatior	n Sheet	
	D : C 11 I			Design	Rainfall D	epth		0.20	
sign	Rainfall In	itensity					I =	0.20	_in/hr
						ea Tabulation			
		Ins	sert additional rows	-		ate all DMAs di	Design	ie BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	(use pull-down menu) Mixed Surface	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	D-3	110588	Types	0.9	0.73	80760.4			
	<u> </u>								
	<u> </u>								
As									
DMAs									
	<u> </u>								
		110588		Total		80760.4	0.20	0.4	0.462

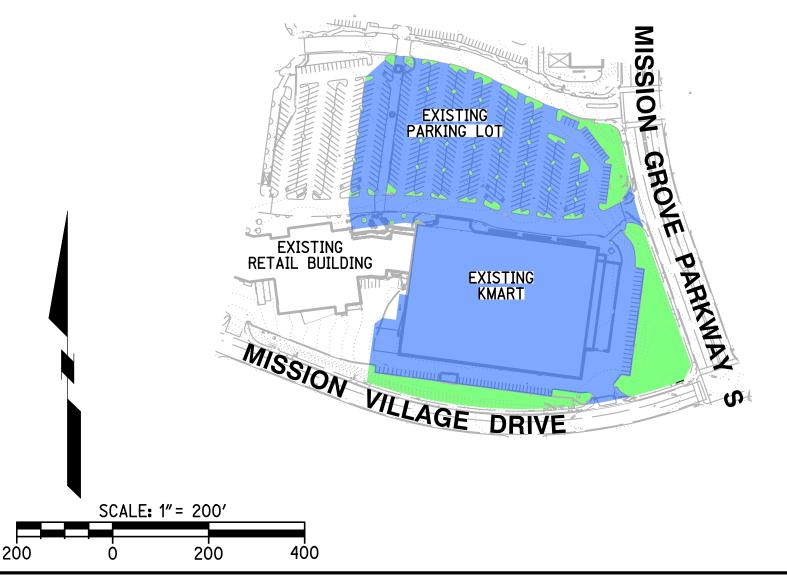
			<u>(Rev. 10-2011)</u>	-			Legend:		Calculated C	
7			eet shall <u>only</u> be use	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>			
		y Name Rick Engineering Company Sam Schuchardt						Date 6/7/2022 Case No		
Designed by Sam Schuchardt Company Project Number/Name 19550-A / Mission						Mission Grov	ze Apartme		,	
r							r			
				BMP	Identificat	ion				
BMP N	AME / ID	MWL-4								
			Mu	ist match Na	me/ID used	on BMP Design	Calculation	Sheet		
				Design	Rainfall D	lepth				
Design	Rainfall Ir	ntensity					I =	0.20	in/hr	
			Drai	inage Manag	gement Are	ea Tabulation				
		Ins	sert additional rows	if needed to	ассоттоа	late all DMAs di		e BMP		
			Post-Project	Effective	DMA		Design Rainfall			
	DMA	DMA Area	Surface Type	Imperivous	Runoff	DMA Areas x	Intensity	Design Flow	Proposed Flow	
	Type/ID	(square feet)	(use pull-down menu)	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)	
	D-4	83572	Mixed Surface Types	1	0.89	74546.2				
	L									
SF	<u> </u>									
DMAs										
		83572		Total		74546.2	0.20	0.3	0.462	

MWS Linear | *Sizing Options*

Flow Based Sizing

The MWS Linear can be used in stand alone applications to meet treatment flow requirements. Since the MWS Linear is the only biofiltration system that can accept inflow pipes several feet below the surface it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

Model #	Dimensions	WetlandMEDIA Surface Area	Treatment Flow Rate (cfs)
MWS-L-4-4	4' x 4'	23 sq. ft.	0.052
MWS-L-4-6	4' x 6'	32 sq. ft.	0.073
MWS-L-4-8	4' x 8'	50 sq. ft.	0.115
MWS-L-4-13	4' x 13'	63 sq. ft.	0.144
MWS-L-4-15	4' x 15'	76 sq. ft.	0.175
MWS-L-4-17	4' x 17'	90 sq. ft.	0.206
MWS-L-4-19	4' x 19'	103 sq. ft.	0.237
MWS-L-4-21	4' x 21'	117 sq. ft.	0.268
MWS-L-6-8	7' x 9'	64 sq. ft.	0.147
MWS-L-8-8	8' x 8'	100 sq. ft.	0.230
MWS-L-8-12	8' x 12'	151 sq. ft.	0.346
MWS-L-8-16	8' x 16'	201 sq. ft.	0.462
MWS-L-8-20	9′ x 21′	252 sq. ft.	0.577
MWS-L-8-24	9' x 25'	302 sq. ft.	0.693


Appendix 7: Hydromodification

Supporting Detail Relating to Hydrologic Conditions of Concern

HYDROMODIFICATION PRE-PROJECT

<u>LEGEND</u>


PERVIOUS AREA	.59,692 SF
IMPERVIOUS AREA	
TOTAL AREA	

HYDROMODIFICATION POST-PROJECT

LEGEND

PERVIOUS AREA	59 , 119 SF
IMPERVIOUS AREA	
TOTAL AREA	377 , 061 SF

$$\frac{\text{Pre} \quad \text{Project}}{\text{Tutal Area} = 8.60 \text{ Ac}} \qquad \text{Impensions} = 7.29 \text{ acres} \\ \text{Tutal Area} = 8.60 \text{ Ac} \quad \text{Pensions} = 1.37 \text{ acres} \\ \text{cn} = 82(137) + 90(7.29) = 88.73 \quad \text{La} = 0.2\times5 = 0.25 \\ \text{S} = (1000/(N) - 10 = 1.27 \\ \text{V} = 42 (8.66 \times (1.80 - 0.25)^2) / (1.80 - 0.26 + 1.27) \\ \text{V} = 0.61 \quad \text{acres} + 43560 = 26,781.74 \text{ ft}^3 \\ \text{Post Project} \qquad \text{Impervious} = 7.30 \\ \text{Tutal Area} = 8.660 \quad \text{Pervious} = 1.36 \\ \text{CN} = 82(1.36) + 90(7.36) = 88.74 \quad \text{La} = 0.2\times5 = 0.25 \\ \text{S} = (1000/(N) - 10 = 1.27 \\ \text{V} = 42 (8.66 \times (1.80 - 0.25)^2 / (1.50 - 0.25 + 1.27) \\ \text{V} = 0.61 \quad \text{acres} + 43566 = 26,781.74 \text{ ft}^3 \\ \text{V} = 0.61 \quad \text{acres} + 43566 = 26,781.74 \text{ ft}^3 \\ \end{array}$$

Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Shown on WQMP Drawings	3 Permanent Controls—Listed in WQMP Table and Narrative	4 Operational BMPs—Included in WQMP Table and Narrative
A. On-site storm drain inlets	Locations of inlets.	 Mark all inlets with the words "Only Rain Down the Storm Drain" or similar. Catch Basin Markers may be available 	☐ Maintain and periodically repaint or replace inlet markings.
		from the Riverside County Flood Control and Water Conservation District, call 951.955.1200 to verify.	□ Provide stormwater pollution prevention information to new site owners, lessees, or operators.
			☐ See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at <u>www.cabmphandbooks.com</u>
			☐ Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains."
B. Interior floor drains and elevator shaft sump pumps		State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer.	Inspect and maintain drains to prevent blockages and overflow.
C. Interior parking garages		□ State that parking garage floor drains will be plumbed to the sanitary sewer.	☐ Inspect and maintain drains to prevent blockages and overflow.

1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Shown on WQMP Drawings	3 Permanent Controls—Listed in WQMP Table and Narrative	4 Operational BMPs—Included in WQMP Table and Narrative
D1. Need for future indoor & structural pest control		Note building design features that discourage entry of pests.	Provide Integrated Pest Management information to owners, lessees, and operators.
D2. Landscape/ Outdoor Pesticide Use	Show locations of native trees or areas of shrubs and ground cover to be undisturbed and retained. Show self-retaining landscape areas, if any. Show stormwater treatment and hydrograph modification management BMPs. (See instructions in Chapter 3, Step 5 and guidance in Chapter 5.)	 State that final landscape plans will accomplish all of the following. Preserve existing native trees, shrubs, and ground cover to the maximum extent possible. Design landscaping to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution. Where landscaped areas are used to retain or detain stormwater, specify plants that are tolerant of saturated soil conditions. Consider using pest-resistant plants, especially adjacent to hardscape. To insure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions. 	Maintain landscaping using minimum or no pesticides. See applicable operational BMPs in "What you should know forLandscape and Gardening" at http://rcflood.org/stormwater/Downloads/ LandscapeGardenBrochure.pdf Provide IPM information to new owners, lessees and operators.

1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Shown on WQMP Drawings	3 Permanent Controls—Listed in WQMP Table and Narrative	4 Operational BMPs—Included in WQMP Table and Narrative
☐ E. Pools, spas, ponds, decorative fountains, and other water features.	□ Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet. (Exception: Public pools must be plumbed according to County Department of Environmental Health Guidelines.)	If the Co-Permittee requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements.	☐ See applicable operational BMPs in "Guidelines for Maintaining Your Swimming Pool, Jacuzzi and Garden Fountain" at http://rcflood.org/stormwater/
☐ F. Food service	 For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer. 	 Describe the location and features of the designated cleaning area. Describe the items to be cleaned in this facility and how it has been sized to insure that the largest items can be accommodated. 	☐ See the brochure, "The Food Service Industry Best Management Practices for: Restaurants, Grocery Stores, Delicatessens and Bakeries" at http://rcflood.org/stormwater/ Provide this brochure to new site owners, lessees, and operators.
G. Refuse areas	Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent run-on and show locations of berms to prevent runoff from the area. Any drains from dumpsters, compactors, and tallow bin areas shall be connected to a grease removal device before discharge to sanitary sewer.	State how site refuse will be handled and provide supporting detail to what is shown on plans. State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.	State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

1	2	3	4
Potential Sources of Runoff	Permanent Controls—Shown on WQMP	Permanent Controls—Listed in WQMP	Operational BMPs—Included in WQMP
Pollutants	Drawings	Table and Narrative	Table and Narrative
☐ H. Industrial processes.	□ Show process area.	☐ If industrial processes are to be located on site, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system."	☐ See Fact Sheet SC-10, "Non-Stormwater Discharges" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com See the brochure "Industrial & Commercial Facilities Best Management Practices for: Industrial, Commercial Facilities" at http://rcflood.org/stormwater/

1	2	3	4
Potential Sources of Runoff	Permanent Controls—Shown on WQMP	Permanent Controls—Listed in WQMP	Operational BMPs—Included in WQMP
Pollutants	Drawings	Table and Narrative	Table and Narrative
I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.)	 Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent run-on or run-off from area. Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. Storage of hazardous materials and wastes must be in compliance with the local hazardous Materials Ordinance and a Hazardous Materials Management Plan for the site. 	 Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. Where appropriate, reference documentation of compliance with therequirements of Hazardous Materials Programs for: Hazardous Waste Generation Hazardous Materials Release Response and Inventory California Accidental Release (CalARP) Aboveground Storage Tank Uniform Fire Code Article 80 Section 103(b) & (c) 1991 Underground Storage Tank www.cchealth.org/groups/haz mat / 	□ See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials " in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

1	2	3	4
Potential Sources of Runoff	Permanent Controls—Shown on WQMP	Permanent Controls—Listed in WQMP	Operational BMPs—Included in WQMP
Pollutants	Drawings	Table and Narrative	Table and Narrative
□ J. Vehicle and Equipment Cleaning	 Show on drawings as appropriate: (1) Commercial/industrial facilities having vehicle/equipment cleaning needs shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes shall have a paved, bermed, and covered car wash area (unless car washing is prohibited on-site and hoses are provided with an automatic shutoff to discourage such use). (3) Washing areas for cars, vehicles, and equipment shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. (4) Commercial car wash facilities shall be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer, or a wastewater reclamation system shall be installed. 	☐ If a car wash area is not provided, describe any measures taken to discourage on-site car washing and explain how these will be enforced.	Describe operational measures to implement the following (if applicable): Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Refer to "Outdoor Cleaning Activities and Professional Mobile Service Providers" for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/ Car dealerships and similar may rinse cars with water only.

1	2	3	4
Potential Sources of Runoff	Permanent Controls—Shown on WQMP	Permanent Controls—Listed in WQMP	Operational BMPs—Included in WQMP
Pollutants	Drawings	Table and Narrative	Table and Narrative
☐ K. Vehicle/Equipment Repair and Maintenance	 Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to prevent run-on and runoff of stormwater. Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas. Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. 	 State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. 	In the Stormwater Control Plan, note that all of the following restrictions apply to use the site: No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately. No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. Refer to "Automotive Maintenance & Car Care Best Management Practices for Auto Body Shops, Auto Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations". Brochure can be found at http://rcflood.org/stormwater/ Refer to Outdoor Cleaning Activities and Professional Mobile Service Providers for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/

1	2	3	4
Potential Sources of Runoff	Permanent Controls—Shown on WQMP	Permanent Controls—Listed in WQMP	Operational BMPs—Included in WQMP
Pollutants	Drawings	Table and Narrative	Table and Narrative
L. Fuel Dispensing Areas	 Fueling areass shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable. Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area1.] The canopy [or cover] shall not drain onto the fueling area. 		 The property owner shall dry sweep the fueling area routinely. See the Fact Sheet SD-30 , "Fueling Areas" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

6 The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.

1	2	3	4
Potential Sources of Runoff	Permanent Controls—Shown on WQMP	Permanent Controls—Listed in WQMP	Operational BMPs—Included in WQMP
Pollutants	Drawings	Table and Narrative	Table and Narrative
M. Loading Docks	 Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer. Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation. Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. 		 Move loaded and unloaded items indoors as soon as possible. See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Shown on WQMP Drawings	3 Permanent Controls—Listed in WQMP Table and Narrative	4 Operational BMPs—Included in WQMP Table and Narrative
N. Fire Sprinkler Test Water		Provide a means to drain fire sprinkler test water to the sanitary sewer.	See the note in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
0. Miscellaneous Drain or Wash		□ Boiler drain lines shall be directly or	
Water or Other Sources		indirectly connected to the sanitary sewer system and may not discharge to the storm drain system.	
 Boiler drain lines 			
Condensate drain lines		Condensate drain lines may discharge to landscaped areas if the flow is small	
□ Rooftop equipment		enough that runoff will not occur. Condensate drain lines may not	
□ Drainage sumps		discharge to the storm drain system.	
Roofing, gutters, and trim.		□ Rooftop equipment with potential to produce pollutants shall be roofed and/or have secondary containment.	
□ Other sources		Any drainage sumps on-site shall	
		feature a sediment sump to reduce the quantity of sediment in pumped water.	
		Avoid roofing, gutters, and trim made of copper or other unprotected metals	
		that may leach into runoff.	
		☐ Include controls for other sources as specified by local reviewer.	

1	2	3	4
Potential Sources of Runoff	Permanent Controls—Shown on WQMP	Permanent Controls—Listed in WQMP	Operational BMPs—Included in WQMP
Pollutants	Drawings	Table and Narrative	Table and Narrative
P. Plazas, sidewalks, and parking lots.			Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.

Appendix 9: O&M

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

Will be included in final WQMP

WHEN RECORDED MAIL TO:

City Surveyor City of Riverside City Hall, 3900 Main Street Riverside, CA 92522

Planning Case: **PR-2022-001359**

For Recorder's Office Use Only

COVENANT AND AGREEMENT ESTABLISHING NOTIFICATION PROCESS AND RESPONSIBILITY FOR WATER QUALITY MANAGEMENT PLAN IMPLEMENTATION AND MAINTENANCE

THIS COVENANT AND AGREEMENT FOR WATER QUALITY MANAGEMENT PLAN IMPLEMENTATION AND MAINTENANCE is made and entered into this ______ day of ______, 2022, by ______ ("Declarant"), with reference to the following facts:

A. Declarant is the fee owner of the real property (the "Property") situated in the City of Riverside, County of Riverside, State of California, and legally described in Exhibit "A", which is attached hereto and incorporated within by reference.

B. Declarant has applied to the City of Riverside ("City") for the construction of GP-2021-11040 located at 375 East Alessandro Boulevard in Riverside

C. As a condition of approval and prior to the map recordation and/or issuance of any permits, the City is requiring Declarant to execute and record an agreement stating that the future property owners shall be informed of the requirements to implement and maintain the Best Management Practices ("BMPs") as described in the approved project specific Water Quality Management Plan.

D. Declarant intends by this document to comply with the conditions imposed by the City and to impose upon the Property mutually beneficial restrictions, conditions, covenants and agreements for the benefit of Property.

NOW, THEREFORE, for the purposes of complying with the conditions imposed by the City of Riverside for the approval of Planning Case **PR-2022-001359**, Declarant hereby declares that the Property is and hereafter shall be held, conveyed, transferred, mortgaged, encumbered, leased, rented, used, occupied, sold and improved subject to the following declarations, limitations, covenants, conditions, restrictions and easements, all of which are imposed as equitable servitudes pursuant to a general plan for the development of the Property for the purpose of enhancing and protecting the value and attractiveness of the Property, and each Parcel thereof, in accordance with the plan for the improvement of the Property, and to comply with certain conditions imposed by the City for the approval of **PR-2022-001359** and shall be binding and inure to the benefit of each successor and assignee in interest of each such party. Any conveyance, transfer, sale, assignment, lease or sublease made by Declarant of a Parcel of the Property shall be and hereby is deemed to incorporate by reference all the provisions of the Covenant and Agreement including, but not limited to, all the covenants, conditions, restrictions, limitations, grants of easement, rights, rights-of-way, and equitable servitude contained herein.

1. This Covenant and Agreement hereby establishes a notification process for future individual property owners to ensure they are subject to and adhere to the Water Quality Management Plan implementation measures and that it shall be the responsibility of the Declarant, its heirs, successors and assigns to implement and maintain all Best Management Practices (BMPs) in good working order.

2. Declarant shall use its best efforts to diligently implement and maintain all BMPs in a manner assuring peak performance at all times. All reasonable precautions shall be exercised by Declarant, its heirs, successors, and assigns, in the removal and extraction of any material(s) from the BMPs and the ultimate disposal of the material(s) in a manner consistent with all relevant laws and regulations in effect at the time. As may be requested from time to time by the City, Declarant, its heirs, successors, and assigns shall provide the City with documentation identifying the material(s) removed, the quantity, and disposal destination.

3. In the event Declarant, or its heirs, successors or assigns, fails to undertake the maintenance contemplated by this Covenant and Agreement within twenty-one (21) days of being given written notice by the City, or fails to complete any maintenance contemplated by this Covenant and Agreement with reasonable diligence, the City is hereby authorized to cause any maintenance necessary to be completed and charge the entire cost and expense to the Declarant or Declarant's successors or assigns, including administrative costs, reasonable attorney's fees and interest thereon at the maximum rate authorized by the Civil Code from the date of the notice of expense until paid in full. As an additional remedy, the Public Works Director may withdraw any previous urban runoff-related approval with respect to the Property on which BMPs have been installed and/or implemented until such time as Declarant, its heirs, successors, or assigns, repays to City its reasonable costs incurred in accordance with this paragraph.

4. Any person who now or hereafter owns or acquires any right, title or interest in or to any parcel of the Property shall be deemed to have consented and agreed to every covenant, condition, restriction and easement contained herein.

5. In addition, each of the provisions hereof shall operate as covenants running with the land for the benefit of the Property and each Parcel thereof and shall inure to the benefit of all owners of the Parcels thereof, their successors and assigns in interest, and shall apply to and bind each successive owner of each Parcel, their successors and assigns in interest.

6. The terms of this Covenant and Agreement may be enforced by the City, its successors or assigns, and by any owner, lessee or tenant of the Parcels of the Property.

Should the City or any owner, lessee or tenant bring an action to enforce any of the terms of this Covenant and Agreement, the prevailing party shall be entitled to costs of suit including reasonable attorneys' fees.

7. Subject to the prior written approval of the City by its Public Works Director, any provision contained herein may be terminated, modified or amended as to all of the Property or any portion thereof. No such termination, modification or amendment shall be effective until there shall have been executed, acknowledged, and recorded in the Office of the Recorder of Riverside County, California, an appropriate instrument evidencing the same including the consent thereto by the City.

IN WITNESS WHEREOF, Declarant has caused this Covenant and Agreement to be executed as of the day and year first written above.

Name: Title:

APPROVED AS TO FORM:

APPROVED AS TO CONTENT

Name: Deputy City Attorney Name: Gilbert M. Hernandez Public Works Department:

EXHIBIT A (Legal Description)

ACKNOWLEDGMENT

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California County of_____)

On_____, before me,_____, a

notary public, personally appeared______, who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

_____ (SEAL)

Signature

ACKNOWLEDGMENT

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California County of_____)

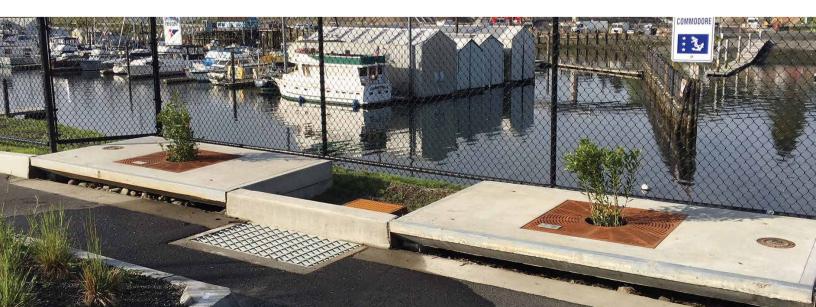
On_____, before me,_____, a

notary public, personally appeared______, who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

_____ (SEAL)


Signature

Appendix 10: Educational Materials

BMP Fact Sheets, Maintenance Guidelines and Other End-User BMP Information

Filterra® High Performance Bioretention

The experts you need to solve your stormwater challenges

Contech is the leader in stormwater solutions, helping engineers, contractors and owners with infrastructure and land development projects throughout North America.

With our responsive team of stormwater experts, local regulatory expertise and flexible solutions, Contech is the trusted partner you can count on for stormwater management solutions.

Your Contech Team

STORMWATER CONSULTANT

It's my job to recommend the best solution to meet permitting requirements.

STORMWATER DESIGN ENGINEER

I work with consultants to design the best approved solution to meet your project's needs.

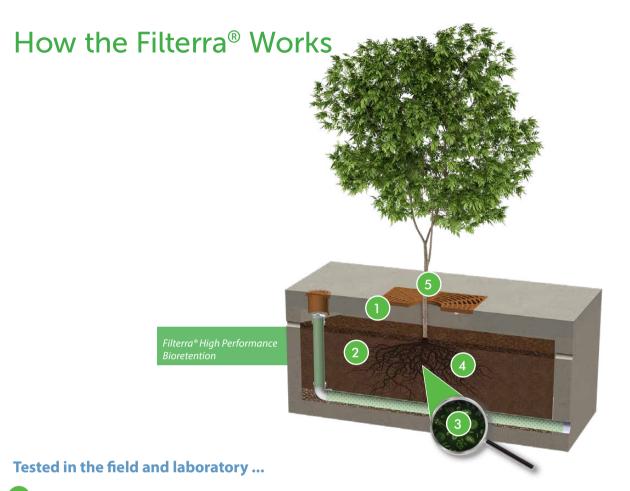
REGULATORY MANAGER

I understand the local stormwater regulations and what solutions will be approved.

SALES ENGINEER

I make sure our solutions meet the needs of the contractor during construction.

Contech is your partner in stormwater management solutions


Low Impact Development in a Small Footprint – Filterra®

Filterra is an engineered high-performance bioretention system. While it operates similar to traditional bioretention, its high flow media allows for a reduction in footprint of up to 95% versus traditional bioretention practices. Filterra provides a Low Impact Development (LID) solution for tight, highly developed sites such as urban development projects, commercial parking lots, residential streets, and streetscapes. Its small footprint also reduces installation and life cycle costs versus traditional bioretention. Filterra can be configured in many different ways to enhance site aesthetics, integrate with other LID practices, or increase runoff reduction through infiltration below or downstream of the system. At the Manchester Stormwater Park seen above, the Filterra systems surrounding the central courtyard allowed for the creation of a community space with parking, sidewalks, and benches in a quaint downtown area. A traditional bioretention system treating the same drainage area would have occupied the entire park area leaving no room for these amenities.

Sfilterra Bioscope.

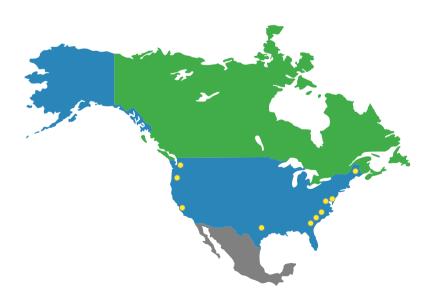
- 1 Stormwater enters the Filterra through a pipe, curb inlet, or sheet flow and ponds over the pretreatment mulch layer, capturing heavy sediment and debris. Organics and microorganisms within the mulch trap and degrade metals and hydrocarbons. The mulch also provides water retention for the system's vegetation.
- 2 Stormwater flows through engineered Filterra media which filters fine pollutants and nutrients. Organic material in the media removes dissolved metals and acts as a food source for root-zone microorganisms. Treated water exits through an underdrain pipe or infiltrates (if designed accordingly).
- Rootzone microorganisms digest and transform pollutants into forms easily absorbed by plants.
- 4 Plant roots absorb stormwater and pollutants that were transformed by microorganisms, regenerating the media's pollutant removal capacity. The roots grow, provide a hospitable environment for the rootzone microorganisms and penetrate the media, maintaining hydraulic conductivity.
- 5 The plant trunk and foliage utilize nutrients such as Nitrogen and Phosphorus for plant health, sequester heavy metals into the biomass, and provide evapotranspiration of residual water within the system.

Plants and organic material are vital to the long term performance of bioretention systems

Using nature to facilitate Stormwater Management

Filterra® Features and Benefits

FEATURE	BENEFITS
High biofiltration media flow rate (up to 140"/hr+)	Greatly reduced footprint versus traditional bioretention and LID solutions
Filterra system is packaged, including all components necessary for system performance	Quality control for easy, fast and successful installation
Quick and easy maintenance	Low lifecycle costs
Variety of configurations and aesthetic options	Integrates easily into any site or landscape plan
Natural stormwater management processes featuring organics and vegetation	Meets Low Impact Development requirements and ensures long-term performance



The Filterra system can be configured with many different aesthetic options

Select Filterra® Approvals

Filterra is approved through numerous local, state and federal verification programs, including:

- New Jersey Department of Environmental Protection (NJ DEP)
- Washington Department of Ecology (GULD) Basic, Enhanced, Phosphorus, and Oil
- Maryland Department of the Environment Environmental Site Design (ESD)
- Texas Commission on Environmental Quality (TCEQ)
- Virginia Department of Environmental Quality (VA DEQ)
- Maine Department of Environmental Protection (ME DEP)
- Atlanta, GA Regional Commission
- Los Angeles County, CA Alternate to Attachment H
- City of Portland, Oregon Bureau of Environmental Services
- North Carolina Department of Environmental Quality (NC DEQ)

Filterra® Performance Testing Results

APPLICATION TIPS

- The Filterra system has been tested under industry standard protocols and has proven its pollutant removal performance and system longevity.
- Contech invests significant resources in media blending calibration and product testing to ensure our media meets our strict performance specifications every time.
- Keep regulators and owners happy by selecting a product with predictable and proven maintenance longevity.

POLLUTANT OF CONCERN	MEDIAN REMOVAL EFFICIENCY	MEDIAN EFFLUENT CONCENTRATION (MG/L)
Total Suspended Solids (TSS)	86%	3.3
Total Phosphorus - TAPE (TP)	70%	0.05
Total Nitrogen (TN)	34%	0.54
Total Copper (TCu)	55%	0.004
Total Dissolved Copper	43%	0.003
Total Zinc (TZn)	56%	0.04
Total Dissolved Zinc	54%	0.1
Total Zinc (TZn)	56%	0.04
Total Petroleum Hydrocarbons	87%	0.71

Each batch of Filterra® media has been extensively tested to ensure consistent performance every time.

> Sources: UVA (TARP) Field Study - 2006 Herrera (TAPE) Study - 2009 Herrera (TAPE) Study - 2014 NC State Study - 2015

Note: Some jurisdictions recognize higher removal rates. Contact your Contech Stormwater Consultant for performance expectations.

Field tested and performance verified

Filterra® Maintenance

Activation and first year of maintenance is included with every system.*

With proper routine maintenance, the engineered media within the Filterra system should last as long as traditional bioretention media. Routine maintenance is included by the manufacturer on all Filterra systems for the first year after activation.* This includes a maximum of 2 visits to remove debris, replace pretreatment mulch, and prune the vegetation.

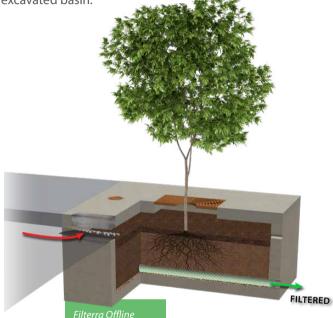
Maintenance is low-cost, low-tech and simple:

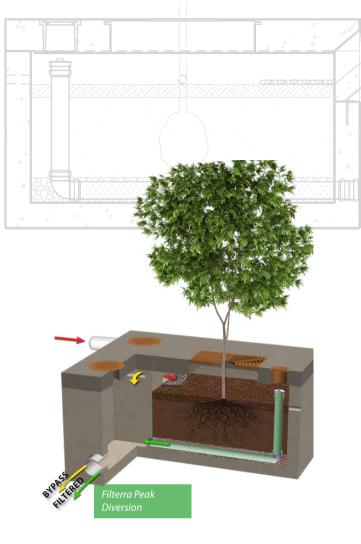
- Remove trash, sediment, and mulch
- Replace with a fresh 3" layer of mulch
- No confined space entry or special tools
- Easily performed by landscape contractor or facilities maintenance provider

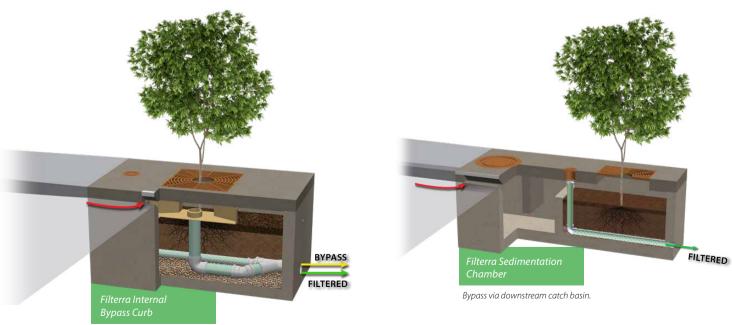
* Some exclusions may apply.

Filterra offers high performance bioretention for advanced pollutant removal with easy maintenance.

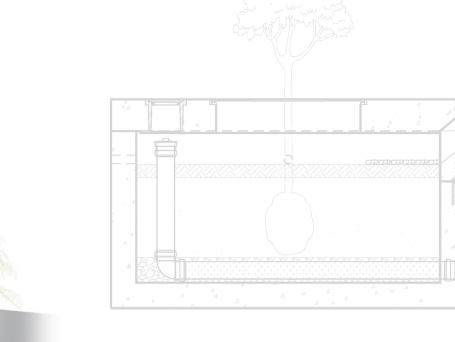
Plant health evaluation and pruning is important to encourage growth.


All stormwater treatment systems require maintenance for effective operation.


Filterra® Configurations


Multiple system configurations integrate with site hydraulic design and layout ...

The Filterra is available in a variety of precast configurations as well as Filterra Bioscape, which can be installed directly into an excavated basin.


Bypass via downstream catch basin.

*Additional configurations available, including offline - pipe, peak diversion - grate, and internal bypass curb-chamber.

Multiple configurations allow for easy site integration

FILTERED

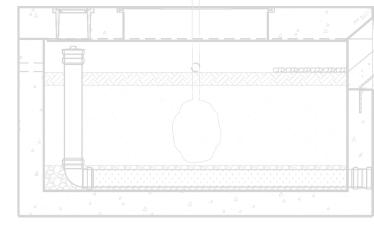
Filterra Bioscape Vault Offline

Filterra® Bioscape®

Configurations

Bypass via downstream catch basin.

Bypass via upstream structure. Multiple inlet options.


*Additional configurations available, including bioscape vault offline pipe.

Filterra[®] Aesthetic Options

Multiple aesthetic options to enhance the appearance and integrate with landscaping ...

Standard Tree Grate

Custom/Decorative Tree Grate

Street Tree

An aesthetic solution to meet your bioretention needs

Filterra[®] Bioscape[®]

Large-scale Filterra that can be customized to your site ...

- Ideal for Filterra systems greater than 300 square feet
- Design with or without containment structure
- Incorporate infiltration directly below the system, where required
- Combine with upstream storage or downstream infiltration
- Use as an alternative to larger regional traditional bioretention systems
- Easily add pretreatment Hydrodynamic Separator for large-scale or heavy pollutant loading applications

A partner

you can rely on

STORMWATER SOLUTIONS

Few companies offer the wide range of highquality stormwater resources you can find with us — state-of-the-art products, decades of expertise, and all the maintenance support you need to operate your system cost-effectively.

THE CONTECH WAY

Contech® Engineered Solutions provides innovative, cost-effective site solutions to engineers, contractors, and developers on projects across North America. Our portfolio includes bridges, drainage, erosion control, retaining wall, sanitary sewer and stormwater management products.

TAKE THE NEXT STEP

For more information: www.ContechES.com

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Get social with us: fin S